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Abstract- In order to develop effective evolutionary artificial 
neural networks (EANNs) we have to address the questions 
on how to evolve EANNs more efficiently and how to achieve 
the best performance from the ANNs evolved. Most of the 
previous works, however, do not utilize all the information 
obtained with several ANNs but choose the one best network 
in the last generation. Some recent works indicate that 
making use of population information by combining ANNs 
in the last generation can improve the performance, 
because they can complement each other to construct 
effective multiple neural networks. In this paper, we 
propose a new method of evolving multiple speciated neural 
networks by fitness sharing which helps to optimize multi-
objective functions with genetic algorithms. Experiments 
with the breast cancer data from UCI benchmark datasets 
show that the proposed method can produce more speciated 
ANNs and improve the performance by combining the only 
representative individuals. 

1 Introduction 

Recently, designing an artificial neural networks (ANNs) by 
evolutionary algorithms has emerged as a preferred 
alternative to the common practice of selecting the apparent 
best network [Yao99]. The technique called evolutionary 
ANNs (EANNs) combines the learning capability of artificial 
neural networks and evolution ability of evolutionary 
algorithms. Evolutionary algorithms can be used for various 
tasks, such as connection weight training, architecture 
design, learning rule adaptation, input feature selection, 
connection weight initialization, and rule extraction from 
ANNs [Caillo99, Song00, Yao98a, Yao98b, Yao99]. 

Although the two forms of adaptation, evolution and 
learning, in EANNs lead to more effectiveness in dynamic 
environments, EANNs make use of only the best ANN in the 
last generation. It ignores all the information  of other ANNs 
___________________ 
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from evolution and learning. A population of ANNs contain 
more information than any single ANN in the population. 
Such information can be used to improve the performance 
and reliability. Many studies on combining ANNs have been 
made to improve generalization performance and reliability 
[Opitz96, Sharkey96]. 

To maximize the effect of combining multiple ANNs, the 
neural networks with large diversity would be better. There 
are no advantages of combining ANNs which generalize 
nearly the same. We need a set of ANNs which generalize 
well and make only small errors respectively. The errors they 
might make should not be common with other ANNs as 
much as possible. They should exhibit some degree of 
diversity and complement each other [Opitz96, Sharkey97, 
Liu00]. In this sense, Liu and Yao have reported a series of 
results with negative correlation learning [Liu00]. 

In this paper we propose another method of evolving 
ensemble neural networks with a speciation technique called 
fitness sharing to generate a population of ANNs that are 
accurate and diverse. Speciation in genetic algorithm creates 
different species, each embodying a sub-solution, which 
means to create not only the best one but also diverse 
solutions [Bäck00, Goldberg89]. Figure 1 shows the basic 
idea of the proposed method. To utilize the fitness sharing 
for achieving the speciation of EANNs, we have to deal with 
a couple of issues: the encoding method of neural networks 
evolved, and the distance measure between two neural 
networks to determine the networks of which the fitness 
should be shared. Especially, in this paper, we adopt an 
information theoretic measure for the distance measure, and 
analyze the evolved neural networks with dendrogram. 
Finally, to show the usefulness of the proposed method, we 
have made extensive experiments with the breast cancer data 
from UCI benchmark datasets. 

In the rest of the paper, we present the proposed EANN 
and combining multiple the ensemble of neural networks. 
Section 3  describes how to evolve multiple neural networks 
in detail. Section 4 applies speciation to the evolution 
process, and presents the methods of combining the ANNs. 
Section 5 describes the experimental results  with the breast 
cancer data from UCI benchmark datasets. 
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Figure 1. Schematic diagram of the proposed method 
 

2 Backgrounds 

2.1 Evolutioanry ANNs 
A lot of works have been made on EANNs. EANNs exploit 
the advantages of the global search capability performed by 
evolutionary algorithms and the local search capability of 
the learning algorithms (like BP) of ANN. 

As a representative work, Yao [Yao98a] proposed an 
EANN approach, EPNet, based on Fogel’s evolutionary 
programming (EP). EPNet emphasizes the evolution of ANN 
behaviors by EP and uses a number of techniques, such as 
partial training after each architectural mutation and node 
splitting, to maintain the behavioral link between a parent 
and its offspring effectively. EPNet also encourages 
parsimony of evolved ANNs by attempting different 
mutations sequentially. That is, node or connection deletion 
is always attempted before addition. EPNet has shown good 
performance in error rate and size of ANN. But this work 
does not use any information of other ANNs in the last 
generation except the best one. Combining the results of 
ANNs generate more reliable and better performance. 

2.2 Combining Multiple ANNs 
There are two main issues in combining multiple ANNs 
[Sharkey96]. The first is the creation of a set of ANNs to be 
combined in an ensemble. There is no advantage of 
combining a set of ANNs that are identical since they 
implement similar generalization. There are some methods to 
create diverse ANNs. They generate the networks by 
varying the initial weights, the architecture, the learning 
algorithm, and the data. In these methods, varying the data 
is the most common method for the creation of ensembles. 
The method includes sampling data, disjoint training sets, 
boosting and adaptive resampling, different data sources, 
and preprocessing. The second is the method by which the 
outputs of the ANNs of the ensemble are combined. There 
are several methods of combining the outputs of ANNs such 

as averaging, weighted averaging, Dempster-Shafer methods, 
combining using rank-based information, voting, supra 
Bayesian approach, stacked generalization, etc. However, 
the methods are usually heavily dependent on the training 
data and need much knowledge on the problem. 

3 Evolution of Multiple ANNs 

Figure 2 shows the overview of combining multiple ANNs 
evolved by speciation. Each ANN in the ensemble is 
generated with random initial weights and full-connection. 
Then, each ANN is trained partially with training data to help 
the evolution search the optimal architecture of ANN and is 
tested with validation data to compute the fitness. The 
fitness of ANN is recognition rate of data and computed 
using speciation technique. Once the fitness is calculated, 
selection is conducted. Selection chooses the best 50% 
individuals to apply genetic operators. The genetic 
operators, crossover and mutation, are applied to those 
selected individuals. Then the next generation is created. 
The process is repeated until stop criterion is satisfied. The 
ANNs in the last generation are trained fully. Then we 
analyze the population of ANNs using single linkage 
clustering method to choose the representatives of each 
species.  The final result is obtained by combining the 
results of these representative ANNs. 
 

Stop?

Choose the representative ANNs

No

Yes

Combine the outputs of the ANNs

Train the ANNs fully

Compute the fitness with fitness sharing

Train the ANNs partially

Generate new population

Apply crossover and mutation

Perform selection

Combine the outputs of the ANNs

Figure 2. The overview of the method 
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3.1 Encoding 
To evolve an ANN, it needs to be expressed in proper form. 
There are some methods to encode an ANN like binary 
representation, tree, linked list, and matrix. We have used a 
matrix to encode an ANN since it is straightforward to 
implement and easy to apply genetic operators. When N is 
the total node number of an ANN including input, hidden, 
and output nodes, the matrix is N×N, and its entries consist 
of connection links and corresponding weights. 
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0.5   0.0   0.0   1.0

0.0   0.0   0.0   1.0
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H1

H2
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O1

H1

I1

H2

Output

Input

0.7 0.1

0.5

0.5

Figure 3. An example of encoding an ANN 
 

In the matrix, upper right triangle (see the Figure 3) has 
connection link information which describes 1 when there 
exists connection link and 0 when there is  no connection link. 
Lower left triangle describes the weight value corresponding 
connection link information. Figure 3 shows an example of 
encoding of an ANN which has one input node, two hidden 
nodes, and one output node. In the figure, In describes input 
nodes, Hn describes hidden nodes, On describes output 
nodes, and n means the index of each node. 

3.2 Crossover 
The cro ssover operator exchanges the architecture of two 
ANNs in the population to search ANNs with various 
architectures. In the population of ANNs, crossover 
operator selects two distinct ANNs randomly and chooses 
one hidden node from each selected ANN. These two nodes 
should be in the same entry of each ANN matrix encoding 
the ANN to exchange the architectures. Once the nodes are 
selected, the two ANNs exchange the connection links and 
corresponding weights information of the nodes and the 
hidden nodes after that. Figure 4 shows an example of 
crossover. In this example, two ANNs have one input node, 
three hidden nodes, and one output node. When the H2 
node is selected as crossover points, they exchange 
connection links and weights information of the selected 
gray entries. 
 

3.3 Mutation 
The mutation operator changes a connection link and a 
corresponding weight of a randomly selected ANN from the 
population. Mutation operator performs one of the two 
operations that are addition of a new connection and 

deletion of an existing connection. Mutation operator selects 
an ANN from the population of ANNs randomly and 
chooses one connection link from it. If the connection link 
does not exist and the connection entry of the ANN matrix is 
0, the connection link is added. It adds new connection link 
to the ANN with random weights. Otherwise, if the 
connection link already exists, the connection is deleted.  
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Figure 4. An example of crossover operation 
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Figure 5. An example of mutation operation 
 

It deletes the connection link and weight information. 
Figure 5 shows two examples of the mutation. Upper one 
presents an example of connection creation. Since the 
selected connection link between I1 and H3 does not exist, 
the mutation operator adds a new connection link with 
weight 0.3 which is randomly generated between 0.0 and 1.0.  
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(a) With sharing 

(b) Without sharing 
Figure 6. The effect of fitness sharing in GA 

 
The other one presents an example of connection deletion. 
The selected connection link between I1 and H3 with weight 
0.8 has been deleted from the node after mutation. 

4 Speciated Evolutionary ANNs 

4.1 Speciation by Fitness Sharing 
Speciation can be implemented by many ways. In this work, 
we use fitness sharing technique [Bäck00, Goldberg89]. 
Fitness sharing decreases the increment of fitness of 
densely populated ANN space and shares the fitness with 
other space. Therefore, it helps genetic algorithm search 
various space and generate more diverse ANNs. Figure 6 is 
from [Goldberg87]. It shows the effect of fitenss sharing in 

genetic algorithm. With fitness sharing, the genetic 
algorithm finds more diverse solutions although some of the 
solutions are not good. 

When fi is the fitness of an individual and sh(d ij) is 
sharing function, the shared fitness fsi is computed as 
follows : 
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The sharing function sh(d ij) is computed using the 

distance value d ij which means the difference of individual i 
and j as follows : 
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Here, σs describes the sharing radius. If the difference of the 
individuals is larger than σs , they do not share the fitness. 
Only the individuals which have smaller difference among 
them than σs can share the fitness. 

Figure 7 presents an example of fitness sharing. The 
individual i shares its fitness with three objects, a, b, and c 
since these objects are similar with i which means their 
differences with i are all less than σs. 
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Figure 7. An example of fitness sharing  

 
In this work, fitness is the recognition rate of each ANN. 

The average of the outputs of each ANN and modified 
Kullback-Leibler entropy are used the difference criterion.  

The average of the outputs of an ANN is as follows :  
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Here, outavg means the average outputs of an ANN, outi is 
the output of the ith input data of the ANN, and N is the 
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total number of the data. The difference of two ANNs is 
euclidean distance of the average outputs. 

The modified Kullback-Leibler entropy is used to measure 
the difference of two ANNs. The outputs of ANNs are not 
just likelihoods or binary logical values near zero or one. 
Instead, they are estimates of Bayesian a posteriori 
probabilities of a classifier. Using this property, we can 
measure the difference between two ANNs with modified 
Kullback-Leilber entropy[Cover91, Kullback51], which is 
called relative entropy or cross-entropy. This is a measure of 
the distance between two distributions p and q, and is 
defined as: 

∑
=

=
m

i i

i
i q

p
pqpD

1

log),(
 

 
However, the entropy is not a true distance due to the 

fact that is not symmetric, i.e., D(p, q) ≠  D(q, p). To remedy 
this problem, we can define symmetric relative entropy as 
follows: 
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Let p and q be output probability distributions of two 

ANNs which consist of m output nodes and  are trained with 
n data. Then, the similarity of the two ANNs can be 
calculated by 
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where p ij means the ith output value of the ANN with 
respect to the jth training data. Two ANNs are more similar 
as the symmetric relative entropy gets smaller. 

4.2 Combining Multiple ANNs 
Combining methods used in this work are simple voting, 
averaging, weighted averaging and optimal combining 
method. Voting method concludes the result of the system 
according to the majority of ANNs. This method is able to 
combine the results of the multiple ANNs without other extra 
computation cost. Averaging method has also low 
computation cost. This method uses the output value which 
has the biggest average value over all the outputs of ANNs 
in the population. Weighted averaging[Opitz96] multiplies 
weight w to outputs of each ANN when average the outputs. 
When the error rate of ith ANN is Ei, the weight wi is 
computed as follows: 
 

∑ −
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Optimal method is the ideal one. This method decides the 
correct value when one of the ANNs in the population 
results in correct answer. It is performed for the comparison 
with other methods and analysis of the ANNs in the 
population. If this method results in 100% recognition rate, it 
means the system has generated ANNs which can solve all 
the problems in the data. Otherwise, it means that there 
exists at least one problem which all of the ANNs in the 
multiple ANN system cannot solve correctly. 

5 Experimental Results 

To show the effectiveness of the proposed method, some 
experiments are conducted for a benchmark problem, the 
breast cancer data. This data is obtained from UCI machine 
learning dataset. The breast cancer data set is originally from 
the University of Wisconsin Hospitals, Madison from Dr. W. 
H. Wolberg. It is a 2 class problem with 699 examples. Each 
data has 9 attributes and 1 class attribute. We have used 
training, validation, and test data sets respectively with 349, 
175, and 175 examples. 

The population size is 20 and the maximum generation 
number is 200. Each ANN is feed-forward ANN with 5 
hidden nodes using back-propagation as learning algorithm. 
Learning rate is 0.1, the partial training presents the training 
data 200 times and the full training presents the training data 
1000 times. Crossover rate is 0.3 and mutation rate is 0.1. 
Integration is conducted with representative ANNs of each 
species in the last generation. Voting, averaging, weighted 
averaging, gating and optimal combining methods are used. 

Table 1, Table 2 and Table 3 show the recognition rates 
of the individuals of proposed systems which are speciated 
with average output and modified Kullback-Leibler entropy, 
and the multiple EANNs system which is not speciated. The 
individuals of both speciated systems have less average 
recognition rates than the multiple EANNs. This means each 
individual of the multiple EANNs has better recognition 
ability than the individuals of speciated EANNs. 

 
Table 1. Speciation with average output 

 
 Avg StdDev Max Min 

Train 0.9469 0.0095 0.9628 0.9226 
Valify  0.8951 0.0177 0.9143 0.8457 
Test 0.9494 0.0176 0.9714 0.9086 

 
Table 2. Speciation with entropy 

 
 Avg StdDev Max Min 

Train 0.9370 0.0207 0.9656 0.8883 
Valify  0.8683 0.0340 0.9200 0.7886 
Test 0.9349 0.0271 0.9714 0.8571 

jjaeone
394



 
Table 3. No speciation 

 
 Avg StdDev Max Min 

Train 0.9509 0.0124 0.9685 0.9112 
Valify 0.9009 0.0270 0.9314 0.8171 
Test 0.9554 0.0179 0.9771 0.9143 

 
We have used single linkage cluster analysis to analyze 

the speciation of ANNs and select representative ANNs 
from each speciation. Figure 8 shows  a dendrogram of the 
population of ANNs speciated with average output with 
single linkage cluster analysis. And Table 4 is the results of 
these speciated EANNs according to the number of clusters. 
The results of gating method is 0.9714. We have not 
included the results of gating methods this table because the 
gating method has used all of the ANNs in the population 
not the representatives of the species. Voting, Averaging 
and weighted averaging methods increased the recognition 
rate to 0.9829. And the optimal one has 0.9943 recognition 
rate. This means these simple combining methods like voting, 
averaging, weighted averaging and gating are not sufficient 
for the combining methods 

Figure 9 and Figure 10 show the evolution of speciated 
EANNs with average output and not-speciated EANNs. 
EANNs which are not speciated have better recognition rate 
than that of speciated EANNs overally. Figure 11 shows the 
comparison of the recognition rate of speciated EANNs with 
average output and modified Kullback-Leibler entropy, and 
EANNs which are not speciated when the combining 
methods are applied. 

 
 

 
Figure 8. A dendrogram of speciated EANNs 

 

 
Table 4. Recognition rates according to the number of 

clusters 
 

# Vote Avg Wavg Optimal 
19 0.9829 0.9771 0.9771 0.9943 
18 0.9829 0.9771 0.9771 0.9943 
17 0.9829 0.9771 0.9771 0.9943 
16 0.9829 0.9829 0.9829 0.9943 
15 0.9829 0.9829 0.9829 0.9943 
14 0.9771 0.9771 0.9771 0.9943 
13 0.9771 0.9829 0.9829 0.9943 
12 0.9771 0.9771 0.9771 0.9943 
9 0.9714 0.9771 0.9771 0.9943 
8 0.9771 0.9771 0.9771 0.9943 
5 0.9657 0.9771 0.9771 0.9943 
4 0.9714 0.9771 0.9771 0.9943 
3 0.9657 0.9771 0.9771 0.9886 

 
By combining the results of the representatives of each 

species, the speciated EANNs have better performance than 
EANNs with no speciation in the case of averaging and 
weighted averaging. Though the EANNs with no speciation 
have generated better individual ANNs, they have little 
performance increase by combining. It means the generated 
ANNs in this system are all similar so combining have not 
resulted in much increase of performance. Although the 
speciated EANNs have generated individual ANNs which 
have worse recognition rate, they have better performance 
than EANNs with no speciation by combining. It means the 
individuals in these system complement each other and the 
speciated EANNs have generated diverse ANNs with 
speciation. 
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Figure 10. The evolution of EANNs which are not speciated 
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Figure 11. The comparison of the proposed method  and 
multiple EANNs with no speciation 

 

6 Concluding Remarks 

In this paper we have proposed a new method to construct 
ensemble EANNs based on BP and GA with speciation. We 
have applied the fitness sharing technique in the 
evolutionary process and used single linkage cluster 
analysis to obtain representatives of each neural species. 
Experiments on a classification problem have shown better 
generalization performance of the proposed me thod than 
multiple EANNs without speciation. 

We have applied the fitness sharing for speciation, we 
could not analyze the population of ANNs which are 
supposed to be speciated. In the future works, we will 
attempt to analyze the ANNs distribution in the population 
which is speciated. Moreover, because the combining 
methods used are too simple and have not shown good 
performance, we are going to develop more sophisticated 
combining methods.  
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