
Speciated Neural Networks Evolved with Fitness Sharing Technique*

 Joon-Hyun Ahn Sung-Bae Cho
 Department of Computer Science Department of Computer Science
 Yonsei University Yonsei University
 134 Shinchon-dong, Sudaemoon-ku 134 Shinchon-dong, Sudaemoon-ku
 Seoul 120-749, Korea Seoul 120-749, Korea
 jhahn@candy.yonsei.ac.kr sbcho@csai.yonsei.ac.kr

Abstract- In order to develop effective evolutionary artificial
neural networks (EANNs) we have to address the questions
on how to evolve EANNs more efficiently and how to achieve
the best performance from the ANNs evolved. Most of the
previous works, however, do not utilize all the information
obtained with several ANNs but choose the one best network
in the last generation. Some recent works indicate that
making use of population information by combining ANNs
in the last generation can improve the performance,
because they can complement each other to construct
effective multiple neural networks. In this paper, we
propose a new method of evolving multiple speciated neural
networks by fitness sharing which helps to optimize multi-
objective functions with genetic algorithms. Experiments
with the breast cancer data from UCI benchmark datasets
show that the proposed method can produce more speciated
ANNs and improve the performance by combining the only
representative individuals.

1 Introduction

Recently, designing an artificial neural networks (ANNs) by
evolutionary algorithms has emerged as a preferred
alternative to the common practice of selecting the apparent
best network [Yao99]. The technique called evolutionary
ANNs (EANNs) combines the learning capability of artificial
neural networks and evolution ability of evolutionary
algorithms. Evolutionary algorithms can be used for various
tasks, such as connection weight training, architecture
design, learning rule adaptation, input feature selection,
connection weight initialization, and rule extraction from
ANNs [Caillo99, Song00, Yao98a, Yao98b, Yao99].

Although the two forms of adaptation, evolution and
learning, in EANNs lead to more effectiveness in dynamic
environments, EANNs make use of only the best ANN in the
last generation. It ignores all the information of other ANNs

* This research was supported by Brain Science and
Engineering Research Program sponsored by Korean
Ministry of Science and Technology.

from evolution and learning. A population of ANNs contain
more information than any single ANN in the population.
Such information can be used to improve the performance
and reliability. Many studies on combining ANNs have been
made to improve generalization performance and reliability
[Opitz96, Sharkey96].

To maximize the effect of combining multiple ANNs, the
neural networks with large diversity would be better. There
are no advantages of combining ANNs which generalize
nearly the same. We need a set of ANNs which generalize
well and make only small errors respectively. The errors they
might make should not be common with other ANNs as
much as possible. They should exhibit some degree of
diversity and complement each other [Opitz96, Sharkey97,
Liu00]. In this sense, Liu and Yao have reported a series of
results with negative correlation learning [Liu00].

In this paper we propose another method of evolving
ensemble neural networks with a speciation technique called
fitness sharing to generate a population of ANNs that are
accurate and diverse. Speciation in genetic algorithm creates
different species, each embodying a sub-solution, which
means to create not only the best one but also diverse
solutions [Bäck00, Goldberg89]. Figure 1 shows the basic
idea of the proposed method. To utilize the fitness sharing
for achieving the speciation of EANNs, we have to deal with
a couple of issues: the encoding method of neural networks
evolved, and the distance measure between two neural
networks to determine the networks of which the fitness
should be shared. Especially, in this paper, we adopt an
information theoretic measure for the distance measure, and
analyze the evolved neural networks with dendrogram.
Finally, to show the usefulness of the proposed method, we
have made extensive experiments with the breast cancer data
from UCI benchmark datasets.

In the rest of the paper, we present the proposed EANN
and combining multiple the ensemble of neural networks.
Section 3 describes how to evolve multiple neural networks
in detail. Section 4 applies speciation to the evolution
process, and presents the methods of combining the ANNs.
Section 5 describes the experimental results with the breast
cancer data from UCI benchmark datasets.

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
0-7803-6657-3/01/$10.00 © 2001 IEEE

jjaeone
390

Combined
Result

Species Species

Species Species

Figure 1. Schematic diagram of the proposed method

2 Backgrounds

2.1 Evolutioanry ANNs
A lot of works have been made on EANNs. EANNs exploit
the advantages of the global search capability performed by
evolutionary algorithms and the local search capability of
the learning algorithms (like BP) of ANN.

As a representative work, Yao [Yao98a] proposed an
EANN approach, EPNet, based on Fogel’s evolutionary
programming (EP). EPNet emphasizes the evolution of ANN
behaviors by EP and uses a number of techniques, such as
partial training after each architectural mutation and node
splitting, to maintain the behavioral link between a parent
and its offspring effectively. EPNet also encourages
parsimony of evolved ANNs by attempting different
mutations sequentially. That is, node or connection deletion
is always attempted before addition. EPNet has shown good
performance in error rate and size of ANN. But this work
does not use any information of other ANNs in the last
generation except the best one. Combining the results of
ANNs generate more reliable and better performance.

2.2 Combining Multiple ANNs
There are two main issues in combining multiple ANNs
[Sharkey96]. The first is the creation of a set of ANNs to be
combined in an ensemble. There is no advantage of
combining a set of ANNs that are identical since they
implement similar generalization. There are some methods to
create diverse ANNs. They generate the networks by
varying the initial weights, the architecture, the learning
algorithm, and the data. In these methods, varying the data
is the most common method for the creation of ensembles.
The method includes sampling data, disjoint training sets,
boosting and adaptive resampling, different data sources,
and preprocessing. The second is the method by which the
outputs of the ANNs of the ensemble are combined. There
are several methods of combining the outputs of ANNs such

as averaging, weighted averaging, Dempster-Shafer methods,
combining using rank-based information, voting, supra
Bayesian approach, stacked generalization, etc. However,
the methods are usually heavily dependent on the training
data and need much knowledge on the problem.

3 Evolution of Multiple ANNs

Figure 2 shows the overview of combining multiple ANNs
evolved by speciation. Each ANN in the ensemble is
generated with random initial weights and full-connection.
Then, each ANN is trained partially with training data to help
the evolution search the optimal architecture of ANN and is
tested with validation data to compute the fitness. The
fitness of ANN is recognition rate of data and computed
using speciation technique. Once the fitness is calculated,
selection is conducted. Selection chooses the best 50%
individuals to apply genetic operators. The genetic
operators, crossover and mutation, are applied to those
selected individuals. Then the next generation is created.
The process is repeated until stop criterion is satisfied. The
ANNs in the last generation are trained fully. Then we
analyze the population of ANNs using single linkage
clustering method to choose the representatives of each
species. The final result is obtained by combining the
results of these representative ANNs.

Stop?

Choose the representative ANNs

No

Yes

Combine the outputs of the ANNs

Train the ANNs fully

Compute the fitness with fitness sharing

Train the ANNs partially

Generate new population

Apply crossover and mutation

Perform selection

Combine the outputs of the ANNs

Figure 2. The overview of the method

jjaeone
391

3.1 Encoding
To evolve an ANN, it needs to be expressed in proper form.
There are some methods to encode an ANN like binary
representation, tree, linked list, and matrix. We have used a
matrix to encode an ANN since it is straightforward to
implement and easy to apply genetic operators. When N is
the total node number of an ANN including input, hidden,
and output nodes, the matrix is N×N, and its entries consist
of connection links and corresponding weights.

0.0 1.0 0.0 1.0

0.5 0.0 0.0 1.0

0.0 0.0 0.0 1.0

0.5 0.7 0.1 0.0

I1 H1 H2 O1

I1

H1

H2

O1

O1

H1

I1

H2

Output

Input

0.7 0.1

0.5

0.5

Figure 3. An example of encoding an ANN

In the matrix, upper right triangle (see the Figure 3) has
connection link information which describes 1 when there
exists connection link and 0 when there is no connection link.
Lower left triangle describes the weight value corresponding
connection link information. Figure 3 shows an example of
encoding of an ANN which has one input node, two hidden
nodes, and one output node. In the figure, In describes input
nodes, Hn describes hidden nodes, On describes output
nodes, and n means the index of each node.

3.2 Crossover
The cro ssover operator exchanges the architecture of two
ANNs in the population to search ANNs with various
architectures. In the population of ANNs, crossover
operator selects two distinct ANNs randomly and chooses
one hidden node from each selected ANN. These two nodes
should be in the same entry of each ANN matrix encoding
the ANN to exchange the architectures. Once the nodes are
selected, the two ANNs exchange the connection links and
corresponding weights information of the nodes and the
hidden nodes after that. Figure 4 shows an example of
crossover. In this example, two ANNs have one input node,
three hidden nodes, and one output node. When the H2
node is selected as crossover points, they exchange
connection links and weights information of the selected
gray entries.

3.3 Mutation
The mutation operator changes a connection link and a
corresponding weight of a randomly selected ANN from the
population. Mutation operator performs one of the two
operations that are addition of a new connection and

deletion of an existing connection. Mutation operator selects
an ANN from the population of ANNs randomly and
chooses one connection link from it. If the connection link
does not exist and the connection entry of the ANN matrix is
0, the connection link is added. It adds new connection link
to the ANN with random weights. Otherwise, if the
connection link already exists, the connection is deleted.























07.02.07.01.0

101.008.0
11005.0

10004.0

11110























01.06.07.05.0

10002.0
10000

10008.0

11110

Before Crossover























01.06.07.01.0

10002.0
10000

10004.0
11110























07.02.07.05.0

101.008.0
11005.0

10008.0
11110

After Crossover

 I1 H1 H2 H3 O1 I1 H1 H2 H3 O1

 I1 H1 H2 H3 O1 I1 H1 H2 H3 O1

Figure 4. An example of crossover operation























07.02.07.01.0
101.008.0
11005.0
10004.0
11110

 I1 H1 H2 H3 O1























07.02.07.01.0
101.000
11005.0
10004.0
10110

 I1 H1 H2 H3 O1
Connection Deletion























07.02.07.01.0
101.000
11005.0
10004.0

10110
 I1 H1 H2 H3 O1























07.02.07.01.0
101.003.0
11005.0
10004.0

11110
 I1 H1 H2 H3 O1

Connection Creation

Figure 5. An example of mutation operation

It deletes the connection link and weight information.
Figure 5 shows two examples of the mutation. Upper one
presents an example of connection creation. Since the
selected connection link between I1 and H3 does not exist,
the mutation operator adds a new connection link with
weight 0.3 which is randomly generated between 0.0 and 1.0.

jjaeone
392

(a) With sharing

(b) Without sharing
Figure 6. The effect of fitness sharing in GA

The other one presents an example of connection deletion.
The selected connection link between I1 and H3 with weight
0.8 has been deleted from the node after mutation.

4 Speciated Evolutionary ANNs

4.1 Speciation by Fitness Sharing
Speciation can be implemented by many ways. In this work,
we use fitness sharing technique [Bäck00, Goldberg89].
Fitness sharing decreases the increment of fitness of
densely populated ANN space and shares the fitness with
other space. Therefore, it helps genetic algorithm search
various space and generate more diverse ANNs. Figure 6 is
from [Goldberg87]. It shows the effect of fitenss sharing in

genetic algorithm. With fitness sharing, the genetic
algorithm finds more diverse solutions although some of the
solutions are not good.

When fi is the fitness of an individual and sh(d ij) is
sharing function, the shared fitness fsi is computed as
follows :

∑
=

= sizepopulation

j
ij

i
i

dsh

f
fs

1

)(

The sharing function sh(d ij) is computed using the

distance value d ij which means the difference of individual i
and j as follows :









≥

<≤−
=

sij

sij
s

ij

ij

dfor

dfor
d

dsh

σ

σ
σ

0

01
)(

Here, σs describes the sharing radius. If the difference of the
individuals is larger than σs , they do not share the fitness.
Only the individuals which have smaller difference among
them than σs can share the fitness.

Figure 7 presents an example of fitness sharing. The
individual i shares its fitness with three objects, a, b, and c
since these objects are similar with i which means their
differences with i are all less than σs.

σs

dic

dib

dia

a

b

c

i

Figure 7. An example of fitness sharing

In this work, fitness is the recognition rate of each ANN.

The average of the outputs of each ANN and modified
Kullback-Leibler entropy are used the difference criterion.

The average of the outputs of an ANN is as follows :

Noutout
N

i
iavg /)(

1
∑

=

=

Here, outavg means the average outputs of an ANN, outi is
the output of the ith input data of the ANN, and N is the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
x

xxx
x
x

x
x

x
xx
xx
xx

xx
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1 xxxx

jjaeone
393

total number of the data. The difference of two ANNs is
euclidean distance of the average outputs.

The modified Kullback-Leibler entropy is used to measure
the difference of two ANNs. The outputs of ANNs are not
just likelihoods or binary logical values near zero or one.
Instead, they are estimates of Bayesian a posteriori
probabilities of a classifier. Using this property, we can
measure the difference between two ANNs with modified
Kullback-Leilber entropy[Cover91, Kullback51], which is
called relative entropy or cross-entropy. This is a measure of
the distance between two distributions p and q, and is
defined as:

∑
=

=
m

i i

i
i q

p
pqpD

1

log),(

However, the entropy is not a true distance due to the

fact that is not symmetric, i.e., D(p, q) ≠ D(q, p). To remedy
this problem, we can define symmetric relative entropy as
follows:

∑
=

+=
m

i i

i
i

i

i
i p

q
q

q
p

pqpD
1

)loglog(
2
1

),(

Let p and q be output probability distributions of two

ANNs which consist of m output nodes and are trained with
n data. Then, the similarity of the two ANNs can be
calculated by

∑∑
= =

+=
m

i

n

j ij

ij
ij

ij

ij
ij p

q
q

q

p
pqpD

1 1

)loglog(
2
1

),(

where p ij means the ith output value of the ANN with
respect to the jth training data. Two ANNs are more similar
as the symmetric relative entropy gets smaller.

4.2 Combining Multiple ANNs
Combining methods used in this work are simple voting,
averaging, weighted averaging and optimal combining
method. Voting method concludes the result of the system
according to the majority of ANNs. This method is able to
combine the results of the multiple ANNs without other extra
computation cost. Averaging method has also low
computation cost. This method uses the output value which
has the biggest average value over all the outputs of ANNs
in the population. Weighted averaging[Opitz96] multiplies
weight w to outputs of each ANN when average the outputs.
When the error rate of ith ANN is Ei, the weight wi is
computed as follows:

∑ −
−

=

k
k

i
i E

E
w

)1(
1

Optimal method is the ideal one. This method decides the
correct value when one of the ANNs in the population
results in correct answer. It is performed for the comparison
with other methods and analysis of the ANNs in the
population. If this method results in 100% recognition rate, it
means the system has generated ANNs which can solve all
the problems in the data. Otherwise, it means that there
exists at least one problem which all of the ANNs in the
multiple ANN system cannot solve correctly.

5 Experimental Results

To show the effectiveness of the proposed method, some
experiments are conducted for a benchmark problem, the
breast cancer data. This data is obtained from UCI machine
learning dataset. The breast cancer data set is originally from
the University of Wisconsin Hospitals, Madison from Dr. W.
H. Wolberg. It is a 2 class problem with 699 examples. Each
data has 9 attributes and 1 class attribute. We have used
training, validation, and test data sets respectively with 349,
175, and 175 examples.

The population size is 20 and the maximum generation
number is 200. Each ANN is feed-forward ANN with 5
hidden nodes using back-propagation as learning algorithm.
Learning rate is 0.1, the partial training presents the training
data 200 times and the full training presents the training data
1000 times. Crossover rate is 0.3 and mutation rate is 0.1.
Integration is conducted with representative ANNs of each
species in the last generation. Voting, averaging, weighted
averaging, gating and optimal combining methods are used.

Table 1, Table 2 and Table 3 show the recognition rates
of the individuals of proposed systems which are speciated
with average output and modified Kullback-Leibler entropy,
and the multiple EANNs system which is not speciated. The
individuals of both speciated systems have less average
recognition rates than the multiple EANNs. This means each
individual of the multiple EANNs has better recognition
ability than the individuals of speciated EANNs.

Table 1. Speciation with average output

 Avg StdDev Max Min

Train 0.9469 0.0095 0.9628 0.9226
Valify 0.8951 0.0177 0.9143 0.8457
Test 0.9494 0.0176 0.9714 0.9086

Table 2. Speciation with entropy

 Avg StdDev Max Min

Train 0.9370 0.0207 0.9656 0.8883
Valify 0.8683 0.0340 0.9200 0.7886
Test 0.9349 0.0271 0.9714 0.8571

jjaeone
394

Table 3. No speciation

 Avg StdDev Max Min

Train 0.9509 0.0124 0.9685 0.9112
Valify 0.9009 0.0270 0.9314 0.8171
Test 0.9554 0.0179 0.9771 0.9143

We have used single linkage cluster analysis to analyze

the speciation of ANNs and select representative ANNs
from each speciation. Figure 8 shows a dendrogram of the
population of ANNs speciated with average output with
single linkage cluster analysis. And Table 4 is the results of
these speciated EANNs according to the number of clusters.
The results of gating method is 0.9714. We have not
included the results of gating methods this table because the
gating method has used all of the ANNs in the population
not the representatives of the species. Voting, Averaging
and weighted averaging methods increased the recognition
rate to 0.9829. And the optimal one has 0.9943 recognition
rate. This means these simple combining methods like voting,
averaging, weighted averaging and gating are not sufficient
for the combining methods

Figure 9 and Figure 10 show the evolution of speciated
EANNs with average output and not-speciated EANNs.
EANNs which are not speciated have better recognition rate
than that of speciated EANNs overally. Figure 11 shows the
comparison of the recognition rate of speciated EANNs with
average output and modified Kullback-Leibler entropy, and
EANNs which are not speciated when the combining
methods are applied.

Figure 8. A dendrogram of speciated EANNs

Table 4. Recognition rates according to the number of

clusters

Vote Avg Wavg Optimal
19 0.9829 0.9771 0.9771 0.9943
18 0.9829 0.9771 0.9771 0.9943
17 0.9829 0.9771 0.9771 0.9943
16 0.9829 0.9829 0.9829 0.9943
15 0.9829 0.9829 0.9829 0.9943
14 0.9771 0.9771 0.9771 0.9943
13 0.9771 0.9829 0.9829 0.9943
12 0.9771 0.9771 0.9771 0.9943
9 0.9714 0.9771 0.9771 0.9943
8 0.9771 0.9771 0.9771 0.9943
5 0.9657 0.9771 0.9771 0.9943
4 0.9714 0.9771 0.9771 0.9943
3 0.9657 0.9771 0.9771 0.9886

By combining the results of the representatives of each

species, the speciated EANNs have better performance than
EANNs with no speciation in the case of averaging and
weighted averaging. Though the EANNs with no speciation
have generated better individual ANNs, they have little
performance increase by combining. It means the generated
ANNs in this system are all similar so combining have not
resulted in much increase of performance. Although the
speciated EANNs have generated individual ANNs which
have worse recognition rate, they have better performance
than EANNs with no speciation by combining. It means the
individuals in these system complement each other and the
speciated EANNs have generated diverse ANNs with
speciation.

0.5
0.6
0.7
0.8
0.9

1

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Number of generations

R
ec
o
g
ni
tio
n
ra
te

Max Avg

Figure 9. The evolution of speciated EANNs with average
output

jjaeone
395

0.5
0.6
0.7
0.8
0.9

1

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

Number of generations

R
ec
o
g
ni
tio
n
ra
te

Max Avg

Figure 10. The evolution of EANNs which are not speciated

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1

Vote Avg Wavg Gating Optimal

R
ec
o
g
ni
tio
n
ra
te

AvgOutput Entropy No speciation

Figure 11. The comparison of the proposed method and
multiple EANNs with no speciation

6 Concluding Remarks

In this paper we have proposed a new method to construct
ensemble EANNs based on BP and GA with speciation. We
have applied the fitness sharing technique in the
evolutionary process and used single linkage cluster
analysis to obtain representatives of each neural species.
Experiments on a classification problem have shown better
generalization performance of the proposed me thod than
multiple EANNs without speciation.

We have applied the fitness sharing for speciation, we
could not analyze the population of ANNs which are
supposed to be speciated. In the future works, we will
attempt to analyze the ANNs distribution in the population
which is speciated. Moreover, because the combining
methods used are too simple and have not shown good
performance, we are going to develop more sophisticated
combining methods.

References

[Bäck00] T. Bäck, D. B. Fogel and Z. Michalewicz,
Evolutionary Computation 2 : Advanced
Algorithms and Operators, IOP, 2000.

[Casillo99] P.A. Castillo, V. Rivas, J.J. Merelo, J. Gonzalez,
A. Prieto, and G. Romero, “G-Prop-II: Global
Optimization of Multilayer Perceptrons using
GAs,” Proc. of 1999 Congress on

Evolutionary Computation, vol. 3, pp.
2022~2027, July 1999.

[Cover91] T. Cover and J. Thomas, Elements of
Information Theory, Wiley Series in
Communications, New York, 1991.

[Goldberg87] D. E. Goldberg and J. Richardson, “Genetic
algorithms with sharing for multimodal
function optimization,” Proc. of the Second Int.
Conf. on Genetic Algorithms, pp. 41~49, 1987.

[Goldberg89] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning,
Addison-Wesley, Reading Massachusetts,
1989.

[Gordon81] A. D. Gordon, Classification : Methods for the
Exploratory Analysis of Multivariate Data,
Chapman and Hall, 1981.

[Kullback51] S. Kullback and R. A. Leibler, “On Information
and Sufficiency,” Ann. Math. Stat., 22, pp.
79~86, 1951.

[Liu00] Y. Liu, X. Yao and T. Higuchi, “Evolutionary
Ensembles with Negative Correlation
Learning,” IEEE Transactions on
Evolutionary Computation, vol. 4, no. 4, pp.
380~387, November 2000.

[Opitz96] D. W. Opitz and J. W. Shavlik, “Actively
Searching for an Effective Neural Network
Ensemble,” Connection Science, vol. 8, No. 3
& 4, pp. 337~353, 1996.

[Sharkey96] A. J. C. Sharkey, “On Combining Artificial
Neural Nets,” Connection Science, vol. 8,
pp.299~313, 1996.

[Sharkey97] A.J.C. Sharkey and N.E. Sharkey, “Combining
Diverse Neural Nets ,” The Knowledge
Engineering Review, vol. 12, no. 3, 231~247,
1997.

[Song00] G.-B. Song and S.-B. Cho, “Combining
incrementally evolved neural networks based
on cellular automata for Complex Adaptive
Behaviors,” Proc. of IEEE Symposium on
Evolutionary Computation and Neural
Networks, pp. 121~129, 2000.

[Yao98a] X. Yao and Y. Liu “A New Evolutionary
System for Evolving Artificial Neural
Networks,” IEEE Trans. Neural Networks, vol
8, pp.694~713, Anchorage, USA, 4-9 May 1998.

[Yao98b] X. Yao and Y. Liu, “Making Use of Population
Information in Evolutionary Artificial Neural
Networks,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics,
vol. 28, no. 3, pp. 417~425, June 1998.

[Yao99] X. Yao, “Evolving Artificical Neural
Networks”, Proceedings of the IEEE, vol. 87,
no. 9, pp. 1423~1447, September 1999.

jjaeone
396

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

