NEUROCOMPUTING

EVIER Neurocomputing 13 (1996) 151-170

A neurocomputing framework:
From methodologies to application

Sung-Bae Cho *

Department of Computer Science, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749,
South Korea

Received 13 March 1995; accepted 11 September 1995

Abstract

In this paper, we present a practical framework of methodologies for increasing the efficiency
of the training process and improving the generalization capability of neural networks. The
methodologies are devised for resolving problems of neural networks primarily in three aspects:
learning, architecture, and data representation. For learning we present a rapid learning method
based on Aitken’s A? process and a training schedule called selective reinforcement learning; for
architecture, a two-stage classification scheme and a multiple network scheme; and for data
representation, a data generation scheme with systematic noise and a preprocessing method by
hidden Markov model. In order to investigate the behavior of neural network classifiers with the
proposed methodologies, we designed and implemented neural networks for recognizing on-line
handwriting characters obtained by an LCD tablet. Experimental results with a large set of on-line
handwriting characters show the usefulness of the proposed methodologies.

Keywords: Methodologies for practical application of neural networks; Learning methods; Neural architecture;
Training data preparation; Handwriting recognition

1. Introduction

A typical neural network classification problem is the learning of arbitrary decision
boundaries for a classification task, based on a collection of labeled training samples.

* Comresponding author. Email: sbcho@csai.yonsei.ac.kr

! This work was supported in part from the Korea Science and Engineering Foundation (KOSEF) and
Center for Artificial Intelligence Research (CAIR), the Engineering Research Center (ERC) of Excellence
Program.

0925-2312/96 /$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0925-2312(95)00089-5

152 S.-B. Cho / Neurocomputing 13 (1996) 151170

The boundaries are arbitrary in the sense that no particular structure, or class of
boundaries, is assumed a priori. While there are many results which show the
usefulness of feedforward neural networks, a number of researchers have also suggested
that current-generation feed-forward neural networks are largely inadequate for difficult
problems in pattern recognition and machine learning, regardless of parallel implementa-
tion issues [16].

The essence of the difficulties lies in the facts that the training algorithms for neural
networks, especially backpropagation algorithm, are based on a simple steepest descent
technique, and estimation error of neural networks can be decomposed into two
components, known as bias and variance; whereas incorrect models lead to high bias,
truly model-free learning suffers from high variance. Thus, model-free approaches to
complex classification tasks are slow to converge, in the sense that large training
samples are required to achieve acceptable performance. This is the effect of high
variance, and is a consequence of the large number of parameters, indeed infinite
number in truly model-free learning, that need to be estimated. Prohibitively large
training sets are then required to reduce the variance contribution to estimation error.
(For theoretical issues, such as VC dimension, to the necessary number of training
examples, see [1,4].) Parallel architectures and fast hardware do not help here: this
convergence problem has to do with training set size rather than implementation.

The only way to control the variance in complex classification problem is to use
model-based estimation. However, and this is the other face of the dilemma, model-based
classification is bias prone: proper models are hard to identify for these more complex
(and interesting) inference problems, and any model-based scheme is likely to be
incorrect for the task at hand, that is, highly biased.

The answer is that the bias/variance dilemma can be circumvented if one is willing
to give up generality, that is, purposefully introduce bias. In this way, variance can be
eliminated, or significantly reduced. The bias should contribute significantly to mean-
squared error only if we should attempt to infer regressions that are not in the
anticipated class. Therefore, in many cases of interest, one could go so far as to say that
designing the right biases amounts to solving the problem. We will suggest that some of
these important biases can be achieved through proper architecture and data representa-
tion.

The issues of neural network classifier design that we address are fundamentally
pragmatic in nature. Although abstract issues such as theoretical questions of conver-
gence are vitally important to the more general questions of whether neural network
classifiers are provably workable, we do not address them. Instead, we make assump-
tions regarding convergence and learnability and focus on practical methodologies that
lead to the applicational framework.

In nontrivial problems, a single network trained with conventional framework would
be large and would require a long training time, owing to the requisite size of the
training data set. Indeed, straight-forward neural network approaches to pattern recogni-
tion, in general, seem tractable only for relatively rudimentary tasks. The constraints of
network size and training set size are joined by an additional constraint.

Given these constraints, a neural network approach to pattern recognition might
employ some form of methodologies which are integrated into a global framework. In

S.-B. Cho / Neurocomputing 13 (1996) 151-170 153

4)

Network Architecture

WEIGHT
PROBLEM Data % PARAMETERS
Representation

Learning Algorithm

\)

Fig. 1. A typical procedure for applying neural networks to practical problems.

order to implement such a framework, we can consider three aspects of the neural

network approach as depicted by Fig. 1 [8].

o The learning algorithm. One of the most widely used learning algorithms is the
backpropagation algorithm. The main reason for this success is that it produces a
highly efficient network in spite of its simplicity. Since the backpropagation makes
use of a simple gradient descent technique, the learning time explosively increases
and the recall performance is greatly reduced for practical problems of large size and
high complexity. In order to overcome this shortcoming, several investigators have
examined methods for improving the rate of convergence of the backpropagation
algorithm [9].

e The architecture. Once one fixes the structure of the network (i.e. chooses the
number of hidden layers and the number of nodes in each hidden layer), the network
adjusts its weights via the learning rule until the optimal weights are obtained. The
corresponding weights along with the structure of the network create the decision
boundaries in the feature space. In many practical pattern recognition problems,
however, a conventional neural network classifier tends not to converge to the
solution state. If the network does converge, the time required for convergence may
be prohibitive for practical purposes. To overcome this difficulty, a variety of
modular neural networks have been proposed [13].

e The training data representation. Learning in neural networks typically requires
many training samples and relies more or less explicitly on some kind of syntactic
preference bias such as ‘minimal architecture,” but does not make use of explicit
representations of domain-specific prior knowledge. If training data is deficient,
learning a functional mapping inductively may no longer be feasible.

The rest of this paper is organized as follows. In Section 2, we show that neural
network, as it is represented in some current neural networks, can be formulated as a
Bayesian framework, thereby making the connection to the statistical pattern classifica-
tion. And then we will focus on the limitations of these methods, at least as they apply
to nontrivial problems in pattern recognition. In Section 3, we illustrate the methodolo-
gies for practical application of neural networks in the three categories: rapid training
techniques, efficient design methods for architecture and methods for data representa-
tion. In order to investigate the behavior of a neural network with the methodologies, we
designed and implemented neural networks for on-line handwriting character recogni-
tion, which is described in Section 4.

154 S.-B. Cho / Neurocomputing 13 (1996) 151-170
2. Neural network classifier
2.1 Bayesian formulation
The outputs of neural networks are not just likelihoods or binary logical values near
zero or one. Instead, they are estimates of Bayesian a posteriori probabilities [30,24].

With a squared-error cost function, the network parameters are chosen to minimize the
following:

f:(yi(X)—df)z] (1)

i=1

E

where E[-] is the expectation operator, { y{X):i=1,..., ¢} the outputs of the network,
and {d;:i=1,...,¢c} the desired outputs for all output nodes. Performing several
treatments in this formula allows it to cast in a form commonly used in statistics that
provides much insight as to the minimizing values for y,(X) [30]:

c

Z(y.«(X)—E[d.-IX])Z]+E[)§var[di|X]

i=1 i=1

E (2)

where E[d;| X] is the conditional expectations of d,, and var[d;| X]is the conditional
variance of d,.

Since the second term in (2) is independent of the network outputs, minimization of
the squared-error cost function is achieved by choosing network parameters to minimize
the first expectation term. This term is simply the mean-squared error between the
network outputs y,(X) and the conditional expectation of the desired outputs. For a 1 of
M problem, d; equals one if the input X belongs to class w, and zero otherwise. Thus,
the conditional expectations are the following:

E[d,|X] = zc:d,.P(ijX)
j=1

=P(w;| X) (3)

which are the Bayesian probabilities. Therefore, for a 1 of M problem, when network
parameters are chosen to minimize a squared-error cost function, the outputs estimate
the Bayesian probabilities so as to minimize the mean-squared estimation error.

2.2 Bias / variance dilemma

The learning problem is to construct a function f(x) based on a ‘training set’
(x,. ¥1)....(xy, yu), for the purpose of approximating y at future observations of x.
this is sometimes called ‘generalization’. To be explicit about the dependence of f on
the data D ={(x,, y,),....(xy, yy)}, we will write f(x; D) instead of simply f(x).
Given D, and given a particular x, a natural measure of the effectiveness of f as a
predictor of y is

E[(y-f(x: D))’ I x, D] (4)

S.-B. Cho / Neurocomputing 13 (1996) 151-170 155

the mean-squared error (where E[-] means expectation with respect to the probability
distribution P). In our new notation emphasizing the dependency of f on D, Eq. (4)
reads

E[(y=f(x: D))’ | x. D]

=E[(y-E[y1x))*I x, D] + (f(x: D) —E[y| x])’ (5)

E[(y—E[yl| x]D?| x, D] does not depend on the data, D, or on the estimator, f; it is
simply the variance of y given x. Hence the squared distance to the learning function,

2
(f(x; D) —E[ylx]) (6)
measures, in a natural way, the effectiveness of f as a predictor of y. The mean-squared
error of f as an estimator of the regression E[y| x] is

Ep|(f(x; D)~ E[y| x])’] (7

where E,, represents expectation with respect to the training set, D, that is, the average
over the ensemble of possible D (for fixed sample size N).

It may be that for a particular training set, D, f(x; D) is an excellent approximation
of E[y| x], hence a near-optimal predictor of y. At the same time, however, it may also
be the case that f(x; D) is quite different for other realizations of D, and in general
varies substantially with D, or it may be that the average (over all possible D) of
f(x; D) is rather far from the regression E[y| x]. These circumstances will contribute
large values in (7), making f(x; D) an unreliable predictor of y. A useful way to assess
sources of estimation error is via the bias/variance decomposition: for any x,

ED[(f(x; D) “E[ylx])z]
= (Ep[f(x;: D)] = E[y| x])’ + E,[(£(x: D) — B[A(x: D)]Y] (8

bias variance

If, on the average, f(x; D) is different from E[y| x], then f{x; D) is said to be biased
as an estimator of E[y| x]. In general, this depends on P; the same f may be biased in
some cases and unbiased in others.

An unbiased estimator may still have a large mean-squared error if the variance is
large: even with E,[f(x; D)} = E[y| x], A{x; D) may be highly sensitive to the data,
and, typically, far from the regression E[y| x]. Thus either bias or variance can
contribute to poor performance. This paper attempts to solve the challenging problem on
the design of appropriate bias.

3. Methodologies

In this paper we will develop a number of methodologies for increasing the efficiency
of training and improving the generalization capability of neural network classifiers. The
methodologies are devised for resolving problems primarily in three areas: learning,

156 S.-B. Cho / Neurocomputing 13 (1996) 151-170

Table 1
Methodologies for practical application of neural networks
Category Methodologies

1 Rapid learning algorithm Aitken’s A? process
Selective reinforcement learning

2 Architecture design Two-stage scheme
Multiple network scheme

3 Data representation Data generation with noise
Preprocessing with HMM

architecture, and data representation. For learning we present several rapid training
techniques for backpropagation according to the approach of three categories: numerical
method based, heuristics based and learning strategy based.

In sequence, we illustrate two design methods for feedforward neural networks. They
are described as mechanisms for incorporating a priori knowledge about a given
problem. The first method, based on a two-stage scheme, decomposes the problem into
more manageable ones, leading to a kind of modular architecture, thereby simplifying
the decision-making process for classification. The second method on multiple network
scheme combines incomplete decisions from several copies of networks for reliable
decision-making.

Finally, we describe two kinds of methods for data representation: a noise-included
training scheme and a hybrid method of hidden Markov models (HMMSs) and a neural
network classifier. The noise-included training scheme adds noise systematically to
given training patterns. This has the same efffect as expanding the number of training
patterns, and therefore improves the generalization capability. The proposed hybrid
method exploits the discriminative capability of a neural network classifier while using
HMM formalism to capture the dynamics of input patterns. Table 1 summarizes the
methodologies.

3.1 Rapid learning algorithms

One of the major drawbacks of the backpropagation algorithm is its slow rate of
convergence. Since the backpropagation makes use of a simple gradient descent
technique, the learning time explosively increases and the recall performance is greatly
reduced for practical problems of large size and high complexity. In order to overcome
this shortcoming, several investigators have examined methods for improving the rate of
convergence of the backpropagation algorithm: these can be classified into the following
three categories.

First, some methods increases the learning speed by analytically incorporating more
information about the error surface into the algorithm with techniques of numerical
analysis [3,33]. Most of them are variants of the second-order method [27,28], which
uses second derivatives in addition to the gradients when calculating the next weight
values with the iterative formula.

Second, some methods accelerate the learning speed by using heuristic knowledge
obtained by applying gradient descent techniques to learning. The basic idea here is

S.-B. Cho / Neurocomputing 13 (1996) 151170 157

concerned with the effective use of learning rate because it is believed that a fixed
learning rate, regardless of the shape of the error curve, is the main cause of slow
learning of the backpropagation algorithm. The typical examples of this category are the
dynamic adaptation method of learning rate [22], and the gradient reuse method [21].

Finally, several methods do not attempt to revise the learning algorithm itself, but to
mediate the shape and sequence of training patterns. These are related to learning
schedule and preprocessing: to train hard patterns more frequently in the course of
learning and to reduce the degree of correlation among training patterns before training.

In this section, we propose two rapid learning methods: one is based on the numerical
method, called Aitken’s A? process, and the other one is based on the learning strategy,
called selective reinforcement learning.

3.1.1 Accelerated learning with Aitken’s A’ process

Let w, be the initial weight and {w,}" the sequence generated by the learning
algorithm of a neural network—backpropagation, for example. Then the weight-updating
formula is usually as follows:

oF

ow,

Wn+|=Wn+lL

%)

where E is the error of the network and u is the learning rate. Since the rapid learning
method is simply considered as an iterative scheme performed by the network itself in
order to solve nonlinear optimization, Aitken’s A? process is used to accelerate the
learning speed. Equation (10) illustrates the definition of this process. The purpose of
Aitken’s A? process is to obtain a sequence that converges more rapidly to a solution
than the original sequence.

2
wn _Wll
w*=w _ (+1) (10)

wn+2—2wn+1 +Wn

The value w," is a better approximation of the solution than w, or w,_ .

We now present a rapid learning method that applies this technique to the weight
updating formula in order to achieve a faster rate of convergence. The fast learning
method presented applies this technique to the weight updating formula for achieving
faster rate of convergence. The algorithm of the presented learning scheme is as follows.

Algorithm 3.1: Fast learning method with Aitken’s A? process
Start learning with w;
while Learning does not finish do

oE
ow

n

wn+|=Wn+”‘

oF

awn+]

Wit2 = Wpy +H-

158 S.-B. Cho / Neurocomputing 13 (1996) 151170

2
(Wn+] - Wn)

n n ’
Wora — 2Wn-H +w,
—_ *
W, =w, .
end _ while

This rapid learning method not only accelerates the rate of convergence, but also
induces convergence in some cases where the iteration diverges [7].

3.1.2 Selective reinforcement learning

In selective reinforcement learning attention is focused on the hard patterns, since a
great deal of time is required for a neural network to learn a few hard patterns. Selective
reinforcement learning consists of two stages. In the first half, the weights are updated
according to the sum of the errors of all training data in order to make the network grasp
the outline of the training patterns. When the total sum of the errors (TSE) becomes
smaller than a predefined tolerance €, the training data for which the errors of output
units exceed tolerance €, are selectively presented.

Algorithm 3.2: Selective reinforcement learning

Start learning with parameters €, €,;

while TSE > ¢, do
/ * It trains all the learning data * /
Training (ALL_DATA),

end _while

while TSE is not close to zero do
/ * It trains hard patterns more frequently * /
Train_data = Select _hard _patterns (ALL_DATA, ¢,);
Training (Train_data);
Training (ALL — DATA),

end _ while

The second stage of selective reinforcement learning interlaces the total patterns with
the hard patterns. After training the network using all patterns until approximately 50%
of them are trained, the hard patterns are determined, and the network trains them once
more. This automatic schedule of pattern presentation reduces the training time and
results in a more generalized network capable of achieving higher recognition perfor-
mance.

3.1.3 Simulation results

The representative methods presented above were compared empirically with the
standard backpropagation algorithm. The problem chosen for comparison was the XOR
problem because it is the most popular benchmark. The network structure used two
incorporated hidden nodes and a bias node with a constant output of 1.0 connected to the
hidden nodes and the output node.

The method of weight updating required a decision between update after presentation
of each 1 /0 pattern or after a complete cycle (epoch) of 1/0 patterns, both of which are

S.-B. Cho / Neurocomputing 13 (1996) 151-170 159

Table 2

A comparison of the number of epochs of the three methods with 25 trials

Method No. of epochs No. of successes
Worst Best Average S.D.

¢bp 18084 6084 13184.00 4056.94 7

ebp-m 19534 677 5721.40 5429.81 25

abp 4914 189 1120.81 1075.36 16

sbp 4626 3202 3881.44 314.85 25

sbp-m 11228 304 1176.40 2498.47 25

methods in current use. In this experiment, we adopted the method of changing the
weights after each epoch. For all of the following comparisons, each consisted of 25
trials in which the initial weights were chosen randomly within the range —0.1 to +0.1.
The average number of epochs taken for a successful trial was computed where success
was deemed to be when the goal region was entered within 20,000 epochs. The goal
region was defined as that region where the total sum of squared error of each pattern is
less than 0.04.

With the conventional backpropagation, the average cycle over all the runs was
13184 epochs with standard deviation 4057, and only 7 cases out of 25 were successful.
With the momentum augmentation, the average cycle became 5721 with standard
deviation 5430. Though the difference between the worst and the best case becomes
large, the average training time is shortened by twofold.

Table 2 shows the number of epochs of each method with 25 trials. In this table, ebp
means the standard backpropagation, and the suffix ‘-m’ represents the augmentation of
momentum. Abp and sbp mean respectively Aitken’s A? process and the selective
presentation of samples.

From this experiment, the fastest method was Aitken’s A? process. Despite that it
does not require as much computation as the usual numerical method based techniques,
it can achieve the performance of the second-order method. The only shortcoming is the
relatively frequent cases of local minima. As compared with the speedup techniques
based on the modification of algorithm, the learning strategy based method, sbp, turned
out to be very stable because all the trials were successful.

3.2 Architecture design techniques

We present two design methods for feedforward neural networks: two-stage scheme
and multiple network scheme. The relative superiority of the two-stage scheme to a
single large neural network classifier is illustrated through the probabilistic interpretation
of the two-stage scheme. And then, as an efficient fusion method of the multiple
network scheme, we describe a combining method based on the fuzzy integral. One of
the important advantages of this method over other conventional methods is that not
only is the classification results combined but that the relative importance of the
different networks is also considered. This approach may provide a possibility for

160 S.-B. Cho / Neurocomputing 13 (1996) 151-170

incorporating any a priori knowledge regarding the underlying problem to improve the
ability of the network to generalize.

3.2.1 Two-stage scheme

The two-stage neural network decomposes the classification problem into several
more manageable ones. The design of a two-stage scheme for efficient classification
entails some methodological considerations. The first step might be to find the partition
{£., &,...., &) by using a clustering technique such as the k-means algorithm, or using
some a priori knowledge about problem structure. As the result, we are given the coarse
partition of the total class 2, {£, &,,...,&), and the fine partition of (2,
{w,, w,,..., 0}

Let coarse categories r; and s, be chosen to have a unique correspondence with each
class ;. For instance, r; and s, could be the row and column of a matrix of classes w;.
Then,

P(w;1X)=P(r;, 5.1 X). (11)

If J is the number of r; categories and X is the number of s, categories, then
I=J XK. If we use the definition of conditional probability, without any simplifying
assumptions the previous expression can be broken down as follows:

P(r; sle)=P(sk|X)><P(rj|sk, X). (12)

Thus, The desired probability is the product of one coarse category posterior probability
and a second conditional probability. This scheme reduces the training of a single
network with J X K outputs to the training of two smaller networks with J and K
outputs, respectively.

Our implementation of the two-stage classifier is shown in Fig. 2. The coarse network
in the figure performs the mapping NN, which is a switch for selecting one of the k
classifiers in the fine stage. The networks in the second stage are realizations of the
mappings NN} This approach, where the desired mappings are accomplished with
several smaller neural networks, typically will require less training time than an
approach that utilizes a single large network to carry out the mappings.

51 1

g
/ o3 NN? }—
—_— NNc 1
E.»=(§1, 52, gk}

uNNk__>

f

Fig. 2. The two-stage classifier composed of several feedforward neural networks. The coarse network
performs the mapping NN, which is a switch for selecting one of the & classifiers in the fine stage.

S.-B. Cho / Neurocomputing 13 (1996) 151170 161

— 1 NNg

{yﬂ, y|2, -“yy]C}

—— NNpg

combine p—

. {%1, %2, ..Y20} #
: N, Ya, e}

— NNg,

{1 Yozr oSt

Fig. 3. The multiple neural network architecture with consensus scheme. n independently trained neural
networks classify a given input pattern by using a consensus method to decide the collective classification.

3.2.2 Multiple network scheme

The networks train on a set of example patterns and discover relationships that
distinguish the patterns. A network of a finite size does not often load a particular
mapping completely or it generalizes poorly. Increasing the size and number of hidden
layers most often does not lead to any improvements. Furthermore, in complex problems
such as character recognition, both the number of available features and the number of
classes are large. The features are neither statistically independent nor unimodally
distributed. Therefore, if we can make the network consider the only specific part of the
complete mapping, it will perform its job better.

The basic idea of the multiple network scheme is to develop n independently trained
neural networks with particular features, and to classify a given input pattern by
obtaining a classification from each copy of the network and then using a consensus
scheme to decide the collective classification by utilizing combination methods [17] (see
Fig. 3). Two general approaches, one based on fusion techniques and a second on voting
techniques form the basis of the methods presented.

There have been proposed various neural network optimization methods based on
combining estimates, such as boosting, competing experts, ensemble averaging,
metropolis algorithms, stacked generalization and stacked regression. A general result
from the previous works is that averaging separate networks improves generalization
performance for the mean squared error. If we have networks of different accuracy,
however, it is obviously not good to take their simple average or simple voting.

To give a solution to the problem, we developed a fusion method that considers the
difference of performance of each network in combining the networks, which is based
on the notion of fuzzy logic, especially the fuzzy integral [10,12]. This method combines
the outputs of separate networks with importance of each network, which is subjectively
assigned as the nature of fuzzy logic.

The fuzzy integral introduced by Sugeno and the associated fuzzy measures provide a
useful way for aggregating information. Using the notion of fuzzy measures, Sugeno
developed the concept of the fuzzy integral, which is a nonlinear functional that is
defined with respect to a fuzzy measure, especially g,-fuzzy measure.

162 S.-B. Cho / Neurocomputing 13 (1996) 151-170

Definition 1. Let X be a finite set, and #: X — [0, 1] be a fuzzy subset of X. The
fuzzy integral over X of the function & with respect to a fuzzy measure g is defined by

h(x)Og(-) =rg§§[min(;n;gk(x) g(E))]-

The calculation of the fuzzy integral with respect to a g,-fuzzy measure would only
require the knowledge of the density function, where ith density, g, is interpreted as the
degree of importance of the source y; towards the final evaluation. These densities can
be subjectively assigned by an expert, or can be generated from data. The value obtained
from comparing the evidence and the importance in terms of the min operator is
interpreted as the grade of agreement between real possibilities, A(y), and the expecta-
tions, g. Hence fuzzy integration is interpreted as searching for the maximal grade of
agreement between the objective evidence and the expectation. For further information,
refer to [10].

3.3 Data representation

Many neural network models, such as a sufficiently large backpropagation network,
can perform any arbitrary mapping from a continuous input space to a continuous output
space [19,20]. In practice, the representation of the data is found to be important in
determining the size of network required to perform the task in the time taken to train
the network and the performance of the network when presented with noisy input. For
these reasons, this section explores two efficient methods of preparing training data to
improve the performance of neural network classifiers.

3.3.1 Noise-included data generation

Error tolerance is one of the most valuable properties of neural networks, yet simple
neural networks are not likely to absorb the input noise of a large-scale problem. In
large-scale classification problems the underlying training set contains only a small
number of instances, and is not sufficiently representative for the underlying distribu-
tions of the classes. Classifiers trained with such sets will perform poorly.

Researchers have tried several different approaches to overcome the geometrical
variations of input data. Fukushima [15] introduces complex cell planes to his model,
Neocognitron. Though it may be appropriate for the biological point of view, the
complex cell method requires too much storage and recognition time to be practical for
large-scale problems. Reber [29] and Khotanzad and Lu [23] use preprocessing mecha-
nisms (involving several techniques such as polar, log, and discrete Fourier transforma-
tion) for extracting the geometrically invariant features. Widrow and Winter [34] manage
the deformation of input patterns by using the invariance net at the front end, and
Waibel et al. [32] use Time Delay Neural Network (TDNN) for dealing with temporal
deformation in speech recognition problems. (For speech recognition problems, it has
been reported that recognition performance is improved by introducing random or
temporal distortions into the training data [5,26].)

S.-B. Cho / Neurocomputing 13 (1996) 151-170 163

We present a distortion method to generate new training data. From a given training
sample, this method automatically generates additional instances of its class by shifting
the sample in a predetermined set of directions (such as up, down, left, and right). This
method expands the number of training patterns in each class, and its artificial expansion
can be performed optimally according to the problem. Networks trained via this method
can respond in a more flexible way to unforeseen variations in future data. The critical
question is how much noise can legitimately be added with the new data still belonging
to the same class as the noiseless present data. Though the answer depends primarily on
the problem, the shifting method we have proposed performs well in many practical
problems.

Holmstrom et al. [18] showed that the additive noise is interpreted as generating a
kernel estimate of the probability density that describes the training vector distribution.
They did not prove that the introduction of additive noise to the training vectors always
improves network generalization, but suggested mathematically justified rules for choos-
ing the characteristics of noise if additive noise is used in training. Our method cannot
be justified analytically, but the newly generated training samples to which noise has
been added can be regarded as being drawn from a kernel estimate of the training vector
density.

3.3.2 HMM preprocessing for sequence recognition

The key idea in the proposed HMM preprocessing architecture is (1) to convert a
dynamic input sample to a static pattern sequence by using HMM-based recognizer and
(2) to recognize the sequence by using an MLP-trained classifier. A block diagram of
the hybrid architecture is shown in Fig. 4.

A usual HMM-based recognizer assigns one Markov model for each class. Recogni-
tion with HMMs involves accumulating scores for an unknown input across the nodes in

RS =
SZ X S NN
2% 20 “ O3

SRR SN
7 /

VAN
“‘.-/;
MAX L_"

Fig. 4. The HMM preprocessing architecture.

164 S.-B. Cho / Neurocomputing 13 (1996) 151-170

each class model, and selecting that class model which provides the maximum accumu-
lated score. On the contrary, the proposed architecture replaces the maximum-selection
part with an MLP classifier.

The hybrid architecture takes the likelihood patterns inside the HMMs and presents
them to an MLP to estimate posterior probabilities of class w; as follows:

H T N
P(wi|X)=f{Zwi°,("’ (Z Yowiiar(j, l))}, (13)

k=1 j=1=1

where the w,:';‘, is a weight from the jth input node at the Ith state to the kth hidden
node, w;" is a weight from the kth hidden node to the ith class output, and f is a
sigmoid function such as f(x)=1/(1 +e*). Here, a;(j,) is the value of the
forward variable «,(I) at the jth HMM class model. Rather than simply selecting the
model producing the maximum value of P(X | A;), the proposed method have an MLP
perform additional classification with all the likelihood values inside HMMs. In this
method, the HMM yields a kind of static pattern of which the inherent temporal
variations have been processed, and the MLP classifier discriminates them as belonging
to one particular class.

The hybrid method automatically focuses on those parts of the model which are
important for discriminating between sequentially similar patterns. In the conventional
HMM based approach, only the patterns in the specified class are involved in the
estimation of parameters; there is no role for any patterns in the other classes. The
hybrid method uses more information than the conventional approach; it uses knowledge
of the potential confusions in the particular training data to be recognized. Since it uses
more information, there are certainly reasons to suppose that the hybrid method will
prove superior to the conventional approach. In this method, the MLP will learn prior
probabilities as well as to correct the assumptions made on the probability density
functions used in the HMMs. For further account, see [11].

4. Application to on-line handwriting recognition

In order to give an idea of the practical application of the presented methodologies in
pattern recognition, a data set of handwriting characters has been used as a source of
training and test samples. An input character consists of a set of strokes, each of which
begins with a pen-down movement and ends with pen-up movements. Several prepro-
cessing algorithms were applied to successive data points in a stroke to reduce
quantization noise and fluctuations of the writer’s pen motion. The processes used are as
follows: the wild point reduction, the dot reduction, the hook analysis, the three point
smoothing, the peak preserving filtering, and the N point normalization. A sequence of
preprocessed data points is approximated by a sequence of 8-directional straight-line
segments which is the same as the chain code used by Freeman [14]. The procedure for
collecting handwriting data is schematically presented in Fig. 5.

S.-B. Cho / Neurocomputing 13 (1996) 151-170 165

I:> Preprocessing 2 ‘:> 2071107654

Fig. 5. Schematic diagram of the process for data collection.

In the experiment, handwriting characters were inputted to the computer (SUN
workstation) by an LCD tablet of Photron FIOS-6440 which samples 80 dots per second.
The tasks were to classify the Arabic numerals, the uppercase letters, and the lowercase
letters which were collected from 13 writers. The writers were told to draw the numerals
and letters into prepared square boxes in order to facilitate segmentation.

4.1 Multistage scheme

First of all, we tried to investigate the recognition rate of the neural network
classifier. To recognize the on-line handwriting characters by neural network classifier,
we implemented two-layer neural networks which have 10 input nodes, 20 hidden nodes
and 10 or 26 output nodes. To train the neural network classifiers, forty examples for
each class were used, while for recognition a further 500 examples were used as test
inputs. '

The recognition results with respect to the three tasks are reported in Table 3. The
neural networks have been commonly presented as good static pattern classifiers, but
this result implies that they still require further research for dynamic pattern recognition.

Moreover, this table reports the recognition results of the multistage neural networks.
The groups at the coarse stage are as follows: For recognizing the numerals, (0, 6),
(1, 5,7), and (4, 8, 9); For the uppercase letters, (D, P), (E, F, I, 0), (N, W, X, Y) an
(U, V); For lowercase letters, (a, d, m), (b, p), (c, i, 1), (e, 2), (g, s), (h, n, y), (k, g, V),
and (u, v). Though the proposed scheme did not increase the recognition rates remark-
ably, the training time was greatly shortened.

4.2 Multiple network scheme

To evaluate the performance of the multiple network scheme, we implemented three
different networks, including the one used in the previous experiment, each of which is a

Ezt;:)cgiition rates of the neural network classifier and the multistage neural networks (%)
Subject Simple NN Multistage NN

Coarse Fine
Numerals 77.4 83.2 71.8
Uppercases 732 81.8 76.0

Lowercases 59.0 73.8 68.8

166 S.-B. Cho / Neurocomputing 13 (1996) 151-170

Table 4

The result of recognition rates (%)

Networks Numerals Uppercases Lowercases
NN, 82.6 73.2 73.9

NN, 81.2 66.8 718

NN, 81.0 70.8 72.1

Voting 84.9 74.0 74.6
Average 86.9 75.2 78.2

Fuzzy 88.1 76.1 80.3

two-layer neural network having different number of input neurons and 20 hidden
neurons. NN,, NN, and NN, have 10 input neurons, 15 input neurons, and 20 input
neurons, respectively. In this way each network makes the decision through its own
resolution; NN, using sparsely sampled input produces the result by means of coarser
view of input image, while NN, uses finer view. Thus, NN, has large possibility to
overcome the variation or noise of input image though it utilizes rather blurred input.

Each of the three networks was trained with 40 samples per class, validated with
another 500 samples, and tested on ten sets of samples collected from ten different
writers: the recognition rate on the validation set was monitored in order to stop the
training process. For all of the following experiments, each consisted of 10 trials in
which the different data were made from different writers.

Table 4 shows the recognition rates of numerals, uppercase letters, and lowercase
letters with respect to the three different networks and their combinations by utilizing
consensus methods like majority voting, average, and the fuzzy integral. As can be seen,
the overall classification rates for the fuzzy integral are higher than those for other
consensus methods as well as individual networks.

50
T B NSNS /777 O

NN

HMM

B HMM+NN

Numerals Uppercases Lowercases

Fig. 6. A comparison of the error rates of neural network, HMM and the hybrid method.

S.-B. Cho / Neurocomputing 13 (1996) 151-170 167

4.3 HMM preprocessing

The next experiment is to recognize the same data set by HMMs. For the HMMs, we
implemented left-right model in which no transitions are allowed to states whose indices
are lower than that of the current state. It was composed of the ten nodes and the eight
observation symbols in each node. The ten nodal matching scores of all models provided
as inputs to the neural network classifier of the hybrid method. To train HMMs and a
neural network classifier, forty examples for each class were used, while for recognition
a further 500 examples were used as test inputs.

In order to apply the presented hybrid method for the numerals recognition, we
implemented another two-layered neural network which has 100 input nodes, 20 hidden
nodes and 10 output nodes. The input was provided by the ten HMM models consisting
of ten nodes.

Fig. 6 compares the error rates of all the three methods with respect to the numerals,
the uppercase letters, and the lowercase letters. The overall recognition rate for the ten
classes with hybrid method is 85.40% on a total of 500 characters. This is a significant
improvement over the performance obtained with HMMs trained with ML optimization
(83.60% recognition rate), as well as with NN using the direction sequences of character
as inputs (74.40% recognition rate). This improvement may be practically significant,
but it is not impressive for a method which should give some net benefit by construc-
tion. However, the fact that similar (or bigger) improvements were obtained for upper
and lower case letters provides evidence that this is a real effect.

5. Concluding remarks

In this paper we have developed a number of methodologies for increasing the
efficiency of training and improving the generalization capability of neural network
classifiers. However, there are a number of things to investigate further:

e In order to measure the efficiency of the proposed methodologies and compare them
analytically, the connection to theoretical results should be explored. A competitive
candidate may be Vapnik-Chervonenkis (VC) dimension, which is an established tool
for analyzing learning from examples [1,6]. Simply stated, the VC dimension VC(G)
furnishes an upper bound for the number of examples needed by a learning process
that starts with a set of hypotheses G about what f may be. It requires large G to find
a good approximation of f, but the larger G is, the more examples of f we need to
pinpoint the good hypothesis [2]. We will be able to show how the proposed
methodologies shrink G without losing good hypotheses.

e Several works are also remaining for further research in the multiple network scheme.
The relatively easy ones are to increase the recognition rate of each base classifier
network for practical usage and to try the same experiments with larger number of
classifiers. Furthermore, another fusion methods such as Dempster-Shafer method
[31,25] may be applied to combine the decisions of the networks. Moreover, it is
relevant to note here that this paper has dealt with the comparison of several methods

168 S.-B. Cho / Neurocomputing 13 (1996) 151-170

within the same framework of neural network architecture, so called the multiple

neural networks. Therefore, it can be also possible to compare with any other neural

network architectures, ‘adaptive mixtures of local experts’, for instance, as long as

there is a fair way to compare the performance which are remained for further study.
e Finally, there are many possibilities of applying the proposed methodologies to more

realistic, practical problems.

The time of the neural network classifiers is coming. It will probably be a golden age
for those who are nimble enough — or powerful enough — to take advantage of it.

Acknowledgements

The author would like to thank Prof. Jin H. Kim of the Department of Computer
Science at KAIST for continuous encouragement. This work was partly conducted while
at: KAIST Center for Artificial Intelligence Research, 373-1 Koosung-dong, Yoosung-ku,
Taejeon 305-701, Korea; and ATR Human Information Processing Research Laborato-
ries, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan.

References

[1] Y.S. Abu-Mostafa, The Vapnik-Chervonenkis dimension: information versus complexity in leaming,
Neural Computation 1 (1989) 312-317.

[2] Y.S. Abu-Mostafa, Hints and the VC dimension, Neural Computation 5 (1993) 278-288.

[3] J.E. Angus, On the connection between neural network learning and multivariate nonlinear least squares
estimation, Int. J. Neural Networks-Res. & App. 1 (1989) 42-47.

[4] E.B. Baum and D. Haussler, What size network gives valid generalization, Neural Computation 1 (1989)
151-160.

{5] R.K. Bemhard and A.K. Wolfgang, Design of hierarchical perception structures and their application to
the task of isolated-word recognition, in: Proc. IEEE Int. Joint Conf. Neural Networks (San Diego, CA,
1989) (1) 243-249.

[6] A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth, Learnability and the Vapnik-Chervonenkis
dimensions, J. ACM 36 (1989) 929-965.

[7] S.-B. Cho and J.H. Kim, An accelerated learning method with backpropagation, in: Proc. IEEE Int. Joint
Conf. Neural Networks (Washington, DC, 1990) (1) 605-608.

[8] S.-B. Cho and J.H. Kim, Strategic application of feedforward neural networks to large-scale classifica-
tion. Complex Systems 6 (4) (1992) 363-389.

[9] S.-B. Cho and J.H. Kim, Rapid backpropagation learning algorithms, Circuits, Systems and Signal
Processing (Special Issue on Neural Processing) 12 (2) (1993) 155-175.

[10] S.-B. Cho and JLH. Kim, A multiple network architecture combined by fuzzy integral, in: Proc.
IEEE / INNS Int. Joint Conf. Neural Networks (Nagoya, Japan, 1993) (I1) 1373-1376.

[11] S-B. Cho. A discriminative hidden Markov model recognizer with neural network postprocessor, in:
Proc. IEEE World Congress on Computational Intelligence (Florida, FL, 1994) 2881-2884.

[12] S.-B. Cho and J.H. Kim, Combining multiple neural networks by fuzzy integral for robust classification,
IEEE Trans. on Systems, Man, and Cybernetics 25 (2) (1995) 380-384.

[13] F. Fogelman Soulie, Neural network architectures and algorithms: a perspective, in: Artificial Neural
Nemworks (Elsevier Science Publishers B.V., North-Holland, 1991) 605-615.

S.-B. Cho / Neurocomputing 13 (1996) 151170 169

[14] H. Freeman, Computer processing in line drawing images, Computing Survey 6 (March 1974) 57-98.

[15] K. Fukushima, A neural network for visual pattern recognition, IEEE Computer 21 (3) (March 1988)
65-74.

[16] S. Geman, E. Bienenstock and R. Doursat, Neural networks and the bias/variance dilemma, Neural
Computation 4 (1) (1992) 1-58.

[17] LK. Hansen and P. Salamon, Neural network ensembles, IEEE Trans. Pattern Analysis and Machine
Intelligence 12 (1990) 993-1001.

[18] L. Holmstrom and P. Koistinen, Using additive noise in backpropagation training, /EEE Trans. Neural
Networks 3 (1) (1992) 24-38.

{19] K. Homik, M. Stincombe and H. White, Multilayer feedforward networks are universal approximators,
Neural Networks 2 (1989) 359-366.

[20] K. Hornik, M. Stinchcombe and H. White, Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks, Neural Networks, 3 (1990) 551-560.

[21] D.R. Hush and JM. Salas, Improving the leaming rate of back-propagation with the gradient reuse
algorithm, in: Proc. IEEE Int. Conf. Neural Networks (San Diego, CA, 1988) (1) 441-447,

[22] R.A. Jacobs, Increased rates of convergence throngh learning rate adaptation, Neural Networks 1 (1988)
295-307.

[23] A. Khotanzad and J.H. Lu, Distortion invariant character recognition by a multilayer perceptron and
backpropagation leaming, in: Proc. IEEE Int. Conf. Neural Networks (San Diego, CA, 1988) (D
635-632.

[24] D.J.C. MacKay, A practical Bayesian framework for backprop networks, Newral Computation 4 (3)
(1992) 448-472.

[25] E. Mandler and J. Schuermann, Combining the classification results of independent classifiers based on
the Dempster/Shafer theory of evidences, Pattern Recognition and Artificial Intelligence (1988)
381-393.

[26] T. Matsuoka, H. Hamada and R. Nakatsu, Syllable recognition using integrated neural networks, in:
Proc. IEEE Int. Joint Conf. Neural Networks (San Diego, CA, 1989) (1) 251-258.

[27] D.B. Parker, A comparison of algorithms for neuron-like cell, in: Neural Networks for Computing, (J.S.
Denker, eds., New York, American Institute of Physics, 1986) 327-332.

[28] D.B. Parker, Optimal algorithms for adaptive networks: second order backpropagation, second order
direct propagation, and second order Hebbian leaming, in: Proc. IEEE Int. Cont. Neural Networks (San
Diego, CA, 1987) (I1) 593-600.

[29] W.L. Reber, An artificial neural system design for rotation and scale invariant pattern recognition, in:
Proc. IEEE Int. Conf. Neural Networks (San Diego, CA, 1987) (IV) 277-283.

[30] M.D. Richard and R.P. Lippmann, Neural network classifiers estimate Bayesian a posteriori probabili-
ties, Neural Computation 3 (1991) 461-483.

[31] G. Shafer and R. Logan, Implementing Dempster’s rule for hierarchical evidence, Artificial Intell. 33
(1987) 271-298.

[32] A. Weibel, T. Hanazawa, G. Hinton, K. Shikano and K.J. Lang, Phoneme recognition using time-delay
neural networks, IEEE Trans. on ASSP 37 (1989) 328-339.

[33] R.L. Watrous, Leamning algorithms for connectionist networks: applied gradient methods of nonlinear
optimization, in: Proc. IEEE Int. Conf. Neural Networks (San Diego, CA. 1987) (II) 619-627.

[34] B. Widrow and R.G. Winter, Neural nets for adaptive filtering and adaptive pattern recognition, [EEE
Computer (March 1988) 25-39.

170

S.-B. Cho / Neurocomputing 13 (1996) 151170

Sung-Bae Cho was born in Seoul, Korea, in 1965. He received the B.S. degree in
computer science from Yonsei University, Korea, in 1988 and-the M.S. and Ph.D.
degrees in computer science from KAIST (Korea Advanced Institute of Science and
Technology), Korea, in 1990 and 1993, respectively.

He worked as a Research Staff at the Center for Artificial Intelligence Research at
KAIST from 1991 to 1993. He was an Invited Researcher of Human Information
Processing Research Laboratories at ATR (Advanced Telecommunications Re-
search) Institute, Kyoto, Japan from 1993 to 1995. Since 1995, he has been an
Assistant Professor in the Department of Computer Science, Yonsei University,
Seoul, Korea. His research interests include neural networks, pattern recognition,
intelligent man-machine interfaces, evolutionary computation and artificial life.

He was awarded outstanding paper prizes from the IEEE Korea Section in 1989
and 1992, and another one from the Korea Information Science Society in 1990. He

was also the recipient of the Richard E. Merwin prize from the IEEE Computer Society in 1993. He was listed
in Who’s Who in Pattern Recognition from the International Association for Pattern Recognition in 1994, and
nominated for biographical inclusion in the Fifth Edition of Five Thousand Personalitics of the World from the
American Biographical Institute in 1995.

Dr. Cho has served as a paper reviewer for a dozen international journals and two international

conferences. He is a member of the Korea Information Science Society, INNS, IEEE Computer Society and
IEEE Systems, Man and Cybemetics Society.

