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Abstract. In the development of location-based services, various location-
sensing techniques and experimental/commercial services have been used. We 
propose a novel method of predicting the user's future movements in order to 
develop advanced location-based services. The user’s movement trajectory is 
modeled using a combination of recurrent self-organizing maps (RSOM) and 
the Markov model. Future movement is predicted based on past movement tra-
jectories. To verify the proposed method, a GPS dataset was collected on the 
Yonsei University campus. The results were promising enough to confirm that 
the application works flexibly even in ambiguous situations. 

1   Introduction 

Location-based services (LBS) have been a hot topic in the field of wireless and mo-
bile communication devices. One reason for this is because mobile device users want 
to be able to access information and services specific to their location. As location-
sensing and wireless network technologies have developed, various kinds of LBS 
have emerged. In the field of context-awareness and artificial intelligence, research-
ers have attempted to develop novel smart location-based applications (see the Re-
lated Works section). Prediction of future movement is one key aspect of the next 
generation of LBS. Current LBS applications attempt to meet the user’s present 
needs. But if the application can also predict where the user will be, it will be able to 
provide services the user may need in the future, as well as the services they need at 
present. 

In previous research on movement prediction, the method of modeling the transi-
tions between locations was used (Figure 1 (b)). The Markov model was used to rep-
resent the transitions between locations and future movement was predicted based on 
the highest probability transition from the current location [1]. However, this model is 
inflexible because it takes into account only the current location or place of the user. 
For example, if the transition from place A to place B has the highest probability and 
the transition to place C has the second highest probability, the application will al-
ways say “you will go to place C” to the user, even if this is untrue. That is to say, the 
model cannot cope with ambiguous situations. 
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Fig. 1. Comparison of location systems 

To achieve more intelligent and flexible predictions, we propose a trajectory-based 
approach (Figure 1(c)). The main idea is to model the trajectories of locations for 
movement prediction so that the predictions are based on past trajectories, not the cur-
rent location. A trajectory-based approach enables the system to distinguish whether 
the user will head for place B or for place C. It can then react adaptively to the user’s 
destination and future movement can be predicted more flexibly and accurately than 
when using the transition-based approach. In addition, the system will act differently 
according to the route taken by the user. For example, different services can be of-
fered to users when they travel along the highway and when they travel along residen-
tial roads. 

2   Related Works 

Many commercial location-based services are already widely used. Wireless service 
providers offer customer-based plans which assign different rates to calls made from 
home or from the office [2]. Major credit card companies have created wireless ATM-
locator services. AT&T provides `find people nearby' services which allow users to 
locate friends and family members. 

A location-aware event planner designed by Z. Pousman et al. integrates a friend 
finder application which displays locations on a given campus map [3]. The user can 
organize social events in contextually-enhanced ways. The system also includes pri-
vacy management functionality which enables the user to manage visibility to others. 
Location-based games like `Can You See Me Now' of the University of Nottingham 
and `Human Pacman' of the National University of Singapore provide novel gaming 
environments which are enhanced by physical locations [4][5]. 

Many researchers have attempted to go beyond present-day location systems by 
extracting high-level information from raw location data. D. Ashbrook et al. proposed 
a method for predicting future movements which used a modification of the k-means 
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clustering algorithm and the Markov chain model [6]. D.J. Patterson et al. proposed a 
method to be used in the current transportation mode which used a dynamic Bayesian 
network model [7]. Domain knowledge was incorporated into the Bayesian network 
model and the parameters of their network were learned using an expectation-
maximization (EM) algorithm. In their experimental results, the Bayesian network 
model outperformed both the decision tree and the Bayesian network model without 
any domain knowledge. Sto(ry)chastics by F. Sparacino estimated the type of mu-
seum visitor for user adaptive storytelling in museums [8]. The visitor's location can 
be tracked by infrared beacons and a Bayesian network model that estimates the visi-
tor's type as greedy, selective, or busy from the user’s location and time spent at each 
location. Visitors are able to see different explanations about the same exhibits ac-
cording to their visiting habits. 

3   Learning and Predicting Future Movement 

Figure 2 shows our movement prediction framework. First, we discover patterns of us
er movement by clustering the location dataset (Step 1). This set comprises sequences
 of GPS records. A sequence represents a movement between places. Then, the model
s are built (Step 2). User-preferred services are paired with related movement pattern 
models. These form user profiles. While the user travels, current movement is compar
ed with the movement models (Step 3). Step 3 is repeated whenever the user travels s
ome distance. If a movement model is significantly similar to the current movement, t
he system will predict that the user will travel along the route of that model (Step 4). 
User-preferred services related to the selected movement pattern are offered to the use
r immediately after the movement prediction. 

To develop an easily adaptable system, it is necessary to automatically find what 
kinds of movements exist in a person's life with minimum pre-knowledge. The self-
organized learning approach is suited to this purpose. We employed self-organizing 
maps to discover significant patterns of user movements from the location dataset. 

The benefit of SOM is that it can provide a good approximation of the original in-
put space. A SOM projects the continuous input space to the discrete output space. 
The output space of a SOM can be viewed as a smaller set of prototypes which store a 
large set of input vectors. This property helps simplify the problem. The sequences of 
raw GPS records can be transformed to the sequences of finite units by projecting 
them onto the SOM output space. We can state the transformed movement data as the 
state transition sequence of the user's movement. Thus, the user's movement patterns 
can be modeled more effectively by learning the transition sequences of finite states 
rather than learning the sequences of the vectors of two floating-point numbers. 

A standard SOM is not able to discover significant movement paths because it can-
not process temporal sequence data. In order to distinguish different movement pat-
terns, temporal data processing is needed. To cope with this problem, the recurrent 
SOM (RSOM) is introduced. The RSOM processes the temporal sequence data by 
maintaining contextual information between the input samples. Even if the GPS data 
is captured at the same place, the RSOM projects the data into different output units 
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Fig. 2. Movement prediction framework 

 

Fig. 3. Differences between the standard SOM and the recurrent SOM 

with respect to past movement trajectories. Figure 3 illustrates the difference between 
the two kinds of SOM. When we project a two-dimensional vector sequence (of 
which the first and the last vectors are the same) into the two kinds of SOM, they 
yield different outputs. The standard SOM plots the first and last vectors into an iden-
tical output unit without regard to past input. However, in the RSOM, the last vector 
is mapped into another output unit. Hence, different movement paths and movement 
trajectories can be distinguished with the last output unit.  

3.1   Discovering Patterns of User Movement  

The SOM is a representative unsupervised neural network used to solve clustering an
d vector quantization problems. The principal goal is to transform an incoming input 
pattern (of arbitrary dimensions) into a one or two-dimensional discrete map [9]. The 
output map L consists of a rectangular or hexagonal lattice of )(in  units. The algorith

m for training the SOM involves four essential processes: initialization, competition, 
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cooperation, and adaptation. These are summarized as follows. Here, )(xb is the best 

matching unit to the input vector, h means the neighborhood function and η  is the lea

rning rate. 

1. Initialize the codebook vectors )0(iw . 

2. Compute difference and select the best matching unit 

)()(minarg)( nwnxnb j−=
 

(1) 

3. Update the codebook vectors 

))()()(()()()1( ),( nwnxnhnnwnw iinbii −+=+ η
 

(2) 

4. Repeat from 2 to 3 until the stop condition satisfies 

Although the RSOM is specialized for temporal sequence processing, it inherits the 
original properties of the SOM [10]. The differences between the RSOM and the stan-
dard SOM are as follows. The RSOM allows the storing of temporal context from 
consecutive input vectors by putting the leaky integrator into the difference formula 
of the competition step. 

))()(()1()1()( nwnxnyny iii −+−−= αα
 (3) 

where α is the leaking coefficient, )(nyi  is the leaked difference vector at step n an

d )(nx is the input vector at step n. The best matching neuron criterion and codebook 

vector update rules are the same as the standard SOM. The best matching unit (BMU)
 at time step n, )(nb  is the unit with the minimum difference. 

)(minarg)( nynb ii=
 

(4) 

The ith codebook vector at step n , )(nwi is updated as follows: 

)()()()()1( ),( nynhnnwnw iinbii η+=+
 

(5) 

The difference vectors are reset to zero after learning each input sequence and the alg
orithm is repeated with the next input. 

In this problem, the input vector )(nx is a GPS record captured at time n, which is 

a two-dimensional vector composed of the user's specific longitude and latitude. A 
new GPS record is captured once or twice a second even if the user does not move. 
The meaningless data in the raw GPS records has to be filtered. Only after the user 
travels some distance, a new GPS record can be captured and used for training and 
predicting. Raw GPS data is never 100% accurate. There are many methods to allow 
for this margin of error. In this research, however, no error correction method was 
employed and the raw GPS records were directly used to focus on movement  
prediction. 

The procedure of pattern discovery is as follows. First, we train the RSOM with the 
trajectory dataset obtained from the user. A trajectory dataset 
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)}(,),1(),0({ NxxxX k …=  is a sequence of GPS records captured during a move-

ment k. Then, the trajectory dataset is transformed into the sequence of BMU 
)}(,),1(),0({ NbbbBk …=  by projecting it to the trained RSOM to group the similar 

trajectories. The transformed trajectory dataset is clustered according to the last BMU. 
A set of the transferred trajectory data that corresponds to the ith output unit of the 
RSOM, },,,{ 21 Li BBBC …=  represents a discovered pattern of user movement. 

iBiX

 

Fig. 4. Combination of RSOM and Markov model 

3.2   Building Trajectory Models 

A Markov model is a stochastic process based on the Markov assumption, under 
which the probability of a certain observation only depends on the observation that di-
rectly precedes it [11].The trajectory models are built using the first-order Markov 
models. A Markov model learns the sequences of the best matching units rather than 
those of the raw GPS data. Changes to the best matching units during the processing 
sequence can be considered as changes of state because the SOM approximates the 
input space.  A trajectory model iM  is learned with a transformed trajectory dataset 

iC . Figure 4 illustrates the combination of the RSOM and Markov model. 

3.3   Predicting Future Movements 

Figure 5 presents an algorithm which outlines the movement prediction phase. When 
a new GPS record is captured by the GPS receiver, the traveling distance after the last 
GPS record is calculated. If this is less than the minimum distance, the record is ig-
nored. If not, it is inputted into the RSOM to get the BMU of the current GPS record. 
The new sequence of BMU is made by concatenating the newly obtained BMU )(Nb  

and the previously obtained BMUs )1(,),1(),0( −Nbbb … . Then, the BMU sequence 

is evaluated with the trajectory models. The state i in the Markov model corresponds 
to the ith output unit in the SOM because the sequences of the BMUs are used as  
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inputs. Hence, the probability that a sequence of the BMUs 

)}(,),1(),0({ NbbbBk …=  will occur from a given trajectory model can be com-

puted using the following equation: 

∏
=

−=
T

j
tbtbbi PqMNbbbP

2
)()1()0()|)(,),1(),0(( …
 

(6) 

The higher the probability of the trajectory model, the more likely the user moves 
similarly to the corresponding trajectory. The simplest way of selecting the most 
likely movement pattern is applying a threshold to the probability of the local model 
and selecting the local model whose probability exceeds the predefined threshold. 
However, this method suffers from a lack of flexibility because the level of probabil-
ity varies according to the length of the movement. As the user moves, the overall 
level of probability decreases because the longer the user moves, the more the state 
transition probability of the Markov model is multiplied. The decision boundary has 
to vary according to the movement pattern. 

input: the trained RSOM and the trajectory models 
output: future movement pattern 
begin 
while (end-of-travel is true) do 
  record = get-a-new-GPS-record(); 
  distance = get-traveling-distance(record);  
  if (distance is less than minimum-distance)  
   continue;  
  end if 
  bmu = get-the-best-matching-unit (RSOM, record);  
  push-back (sequence, bmu);  
  for (each trajectory model) do 
    model.probability = evaluate-BMU-sequence(sequence, model);  
  end for 
  for (each trajectory model) do 
    model.significance = compute-significance(); 
  end for 
  max-significance = get-maximum-significance() 
  if (max-significance exceeds  threshold)  
    return model.pattern-number;  
  end if 
end while 

Fig. 5. Outline of the movement prediction algorithm 

Therefore, the method based on the relative significance of the trajectory model is 
employed instead of using the probability of the trajectory model directly. We select 
the outstandingly probable local model. The significance of the trajectory model is 
computed using the following equation: 

∑
== −

−=
I

Iksti

jk
jkj I

MBP
MBpMcesignifican

.1 1

)|(
)|()(  (7) 
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The significance of the trajectory model is defined as the difference between the 
probability that the current BMU sequence is generated from one model and the mean 
of the probabilities from the others. If there is the trajectory model with the signifi-
cance exceeding the predefined threshold, we predict that the user will travel along 
the corresponding trajectory. In defining the threshold, the trade off between speed 
and accuracy has to be considered. The lower the threshold, the earlier we can predict 
the user's movement. If the threshold is set too high, the prediction will be made later 
with a relatively low risk of false prediction. 

Table 1. User's movements in GPS data 

Number Starting Location Ending Location Count 

1 Main Gate Engineering Hall I 13 

2 Engineering Hall I College of Liberal Arts II 12 

3 College of Liberal Arts II Auditorium 13 

4 Auditorium College of Social Science 13 

5 College of Social Science Engineering Hall III 13 

6 Engineering Hall III Student Union 12 

7 Student Union Engineering Hall III 13 

8 Engineering Hall III Central Library 13 

9 Central Library College of Liberal Arts I 12 

10 College of Liberal Arts I Main Gate 12 

4   Experiments 

To test the proposed method, we collected a GPS dataset based on the actual campus 
life of Yonsei University students. The average student usually moves along 9 build-
ings for attending a lecture, having lunch, studying and participating in club activities 
along 10 kinds of paths. Four students walked along these predefined paths, each 
holding a GPS-enabled handheld computer. Each movement was discriminated by us-
ing the loss of the GPS signal and each trajectory was labeled according to its starting 
location and ending location. 130 trajectory datasets were collected in total, 13 sets 
for each class. Each trajectory dataset consisted of sequences of two dimensional vec-
tors (longitude and latitude). However, four trajectory datasets were excluded from 
the experiments due to recording problems in the GPS receivers. Table 1 presents the 
description of each movement pattern. Due to GPS signal errors, the collected data 
could differ slightly from the real moving paths. In our experiments, an 8x8 map was 
used. The initial learning rate was 0.03 and the initial neighborhood radius was 4. The 
training algorithm was repeated 5000 times. 

Prediction performance was evaluated using cross-validation because the size of 
the dataset was not large. First, the dataset was divided into 13 subsets. 9 subsets con-
tained all kinds of classes and one class was omitted from the 4 subsets.  We then 
chose one subset as the test dataset and the remaining 12 subsets were used for  
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training. Training and testing were repeated 13 times while changing the test subset. 
We repeated this cross-validation procedure ten times in order to evaluate the per-
formance accurately. The results of the prediction experiments are given in Table 2 as 
a confusion matrix. 

Table 2. Confusion matrix 

Predicted 
 

1 2 3 4 5 6 7 8 9 10 Miss Accuracy 

1 41 0 0 0 0 0 0 0 0 0 89 0.32 
2 10 110 0 0 0 0 0 0 0 0 0 0.92 
3 0 0 116 0 0 0 0 0 0 0 14 0.89 
4 0 0 0 130 0 0 0 0 0 0 0 1.00 
5 0 0 0 0 129 0 1 0 0 0 0 0.99 
6 0 0 0 0 0 88 0 32 0 0 0 0.73 
7 0 9 0 0 0 0 121 0 0 0 0 0.93 
8 0 0 0 0 0 20 0 110 0 0 0 0.85 
9 0 0 0 0 4 0 0 0 116 0 0 0.97 

Actual 

10 0 11 0 0 0 0 0 0 0 99 0 0.82 

The 'Miss' column shows data which was not predicted because the significance 
did not exceed the threshold until the end of the movement. The prediction accuracy 
of movement path 1 is the lowest because it shows the most misses. One possible rea-
son for this is because there was not enough time to exceed the threshold because the 
main gate and engineering hall I are so close to each other. However, besides the 
misses, no errors in prediction occurred. The lower accuracy of the path 1 reduces the 
average accuracy (0.84%). However, when the results from path 1 are removed, per-
formance is acceptable. The average accuracy when excluding movement 1 is 0.9. In 
ambiguous situations (movements 6 and 8), the accuracies are 0.73 and 0.85, respec-
tively. All errors in predicting paths 6 and 8 are due to the confounding of the two 
paths. The average travel time was 4 minutes 37 seconds and the average time elapsed 
until prediction was 1 minute 21 seconds. This result indicates that we can predict the 
user's future movement path before the user arrives at the destination. 

5   Conclusion 

In this paper, a novel method for learning user's movement patterns and predicting fut
ure movements is presented. Our trajectory-based movement prediction method can le
ad to more intelligent and proactive location-based services. In the future, we plan to i
ncorporate more contexts into the trajectory models. If additional context information 
such as time of day, transportation mode and current activities are used, needs could b
e estimated more accurately. Especially, information about the time of day may be a k
ey factor when improving accuracy because many people travel along their regular ro
utes during specific time periods. 
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