모바일 기기의 근거리 정보공유를 통한
GPS 손실 복구 알고리즘

민준기, 조성배
연세대학교 컴퓨터과학과
loolike@sclab.yonsei.ac.kr sbcho@cs.yonsei.ac.kr

요 약
위치정보는 사용자에게 유용한 서비스를 제공하는데 필요한 주요 컨텍스트 중의 하나로, 이를 얻기 위해 GPS(Global Positioning System)가 널리 사용되고 있다. GPS는 위성신호를 이용하기 때문에 별도의 기거가 필요 없고 전 세계를 포함하는 넓은 가용범위를 맡지만, 도심과 같이 높은 건물이 많은 지역에서는 수신이 어렵다는 단점이 있다. 본 논문은 주변기기들의 위치정보를 공유 받아 모바일 기기의 GPS 정보손실을 복구하는 알고리즘을 제안한다. 먼저 주변의 모바일 기기네기준의 위치정보를 근거리 통신의 에드록 네트워크인 스캐터넷을 통해 공유받는다. 그 후, 근거리 통신의 가용범위와 지도상의 지형정보를 함께 고려하여 복구 알고리즘을 통해 자신의 위치를 추정한다. 본 논문에서는 최근 모바일 기기에 기본으로 장착되는 근거리 통신기술인 블루투스(Bluetooth)를 가정하여 시뮬레이션 환경을 모델링 하였으며, 실험결과 제안하는 방법을 통해 손실된 GPS 정보의 상당 부분이 복구되는 것을 확인하였다.

1. 서 론

스마트폰 등과 같은 모바일 기기의 발달로, 대용량 메모리를 이용한 사진이나 음악 등의 미디어정보 저장, 블루투스나 무선랜 등의 통신기술을 이용한 데이터 전송이 유행해졌다. 또한 사용자가 항상 휴대하기 때문에 전화 통화기록, SMS(Short Message Service) 내용, GPS, Global Positioning System) 로그 등의 다양한 일상정보(표 1)를 효과적으로 수집할 수 있어서 사용자 편의를 위한 다양한 서비스를 제공할 수 있다[1, 2]. 특히 사용자에게 필요한 맞춤형 서비스를 제공하기 위해서는 사용자의 의도나 행동과 가장 밀접한 관련이 있는 위치정보를 정확하게 획득하는 것이 중요하며, 이를 위한 다양한 방법들이 연구되고 있다[3, 4].

표 1. 스마트폰으로부터 수집 가능한 로그정보

<table>
<thead>
<tr>
<th>로그 종류</th>
<th>가용 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>위치, 경도, 이동속도, 진행방향, 날씨, 시간</td>
</tr>
<tr>
<td>Call</td>
<td>송/수신 내역, 음성정보, 통화시간</td>
</tr>
<tr>
<td>SMS</td>
<td>송/수신 내용, 문자정보</td>
</tr>
<tr>
<td>사진</td>
<td>생생날짜, 영상정보</td>
</tr>
<tr>
<td>음악</td>
<td>재생 내역, 노래제목</td>
</tr>
<tr>
<td>블루투스</td>
<td>인접기기 정보</td>
</tr>
<tr>
<td>기타</td>
<td>배터리 상태, 날씨, 기온, 습도 등</td>
</tr>
</tbody>
</table>

GPS는 여러 위치로부터 쓰아진 신호가 수신기까지 전달되는 시간차를 계산하여 자신의 위치를 측정하는 방법으로, 실제 예시의 사용자 위치정보를 알아내는데 널리 사용되고 있다. Laasonen은 모바일 환경의 적은 자원을 가지고 사용자의 GSM(Global system for mobile communications) 데이터로부터 주요점과 경로를 자동으로 추출하는 알고리즘을 제안하고, 이를 통해 사용자의 이동 경로로부터 목적점을 예측해주는 서비스를 제공하였다[5]. 이 때 장소 예측의 신뢰도가 낮은 경우 여러 장소를 북은 지역을 대신 예측한다. Asbrook은 사용자의 이동경로를 예측하기 위해 GPS데이터를 K-means 알고리즘으로 클러스터링하여 사용자가 오래 머문 주요장소를 탐색하고, 장소간의 이동경로를 Markov 연쇄모형을 통해 모델링하였다[6]. 실제로 GPS는 오차나 정보의 손실이 많이 발생하며, 특히 도심과 같이 높은 건물이 많은 장소에서는 위치 신호를 받지 못하는 경우가 흔히 발생하기 때문에 수집된 GPS정보가 유효한지를 평가하는 방법들도 함께 연구되고 있다[7]. 하지만 이들 대부분은 자동차에 대해 추가 센서정보를 이용하여 운영경로의 정확도를 높이는 방법에 대한 것들로 국한되어 있으며[8, 9], 스마트폰 등과 같은 모바일 기기에서의 GPS 정보의 손실 복구에 대한 연구는 미비하다.

본 논문에서는 인접한 기기들의 유효한 위치정보를 블루투스의 에드록 네트워크인 스캐터넷(Scatternet)을
통해 공유하여 모바일 기기의 손실된 GPS정보를
복구하는 알고리즘을 제안한다. 이때 블루투스의
가용거리와 지도상의 지형 정보가 함께 고려되며, 미리
정의된 규칙을 통해 손실된 자신의 현재 위치를
추측한다. 본 논문에서는 제안하는 방법을 시뮬레이션
환경으로 모델링 하여 유용성을 검증하였다.

2. 충산산스와 스케터넷

WPAN(Wireless Personal Area Network)의 구축을
위한 사용법, 적용력, 근거리 무선 네트워크 기술인
블루투스는 최근 모바일 기기에 기본으로 탑재되고
있으며, 이를 이용한 근거리 데터전송이나 GPS
(Local Positioning System) 등의 다양한 서비스들이
연구되고 있다[10]. 블루투스는 마스터-슬레이브
기반의 MAC 프로토콜을 사용하며, 이들 간에 동적으로
네트워크를 형성할 수 있는 피코넷(Piconet)을 한다.
이때 하나의 마스터는 최대 7개의 슬레이브와 연결될
수 있다. 여러 개의 피코넷은 브릿지(Bridge) 역할을
하는 기기를 통해 연결되어 그림 1과 같이 에드호크
네트워크인 스케터넷을 구성할 수 있다[11]. 본
논문에서는 블루투스 스케터넷을 통해 GPS정보를
공유하여 손실정보를 복구하는 방법을 제안한다.

그림 1. 블루투스 스케터넷

3. 모바일 기기의 GPS 손실복구

3.1 위치정보관리 에이전트

본 논문에서 제안하는 GPS 정보손실 복구방법을
위해 모바일 기기의 위치정보관리 에이전트를
구현하였다. 각 에이전트는 GPS 정보를 통해 자신의
위치를 알 수 있다. GPS 손실이 발생할 경우 이 지점의
위치정보를 알 수 없을 경우, 지도정보와 두 개 기기들의
GPS 좌표를 참고하여 자신의 위치를 추측하게 된다.
에이전트는 모바일 기기에 내장되어 있는 블루투스를
이용하여 인접한 기기를 찾고 자신의 위치를 추측하게 된다.
이때, 각 기기는 고유한 하드웨어 ID를 가지고 있기 때문에 식별이 가능하다.
에이전트는 인접한 기기의 위치관리 에이전트에게 그
기기의 위치 정보를 요청할 수 있고, 이 정보들은 블루투스를 통해 주고받는다. 그림 2의
수도도를 보면, 본 논문에서 구현한 에이전트의 기능을
보여준다.

3.2 정보공유기반 GPS 손실복구 알고리즘

주변 기기와 위치정보를 공유할 때 사용하는 데이터
전송 수단인 블루투스는 근거리 무선네트워크기기
에만 인접한 기기의 위치정보를 사용할 수 있다.
따라서 인접한 기기들 모두 GPS 수신불가지역에
있을 경우, 이들간의 정보 공유만으로는 손실된
위치정보를 복구할 수 없다. 본 논문에서는 이를
해결하기 위해 규칙기반 공유 알고리즘을 제안한다.

위치정보를 모으는 모바일 기기 \(d_i\) 에 대해서, 자신과
인접하면서 GPS 수신이 가능한 기기들의 접점을
\(D_k(d_j)\), 위치정보를 모으는 기기들의 접점을
\(D_k(d_j)\) 라
하자. 각 기의 지도 \(M\)의 좌표 \(x\)에 \(d_i\)가 존재할 수 있는
경우 \(M(x) = 1\), 불가능한 경우를 \(M(x) = 0\) 라 할 때, 제안하는 알고리즘은 다음과 같다.

1단계. \(\forall d \in D_k(d_j)\) 에 대해서, \(M(\text{coord}(d)) = 0\).

이때, \(\text{coord}(d)\)는 기기 \(d\)의 좌표를 나타낸다. 이
지점들은 GPS 수신이 가능하기 때문에 GPS 수신불가
시태인 \(d_i\)의 위치가 될 수 있다.

2단계. \(\forall x \in \{\text{coord}(d_j)\pm r\} \cap \{\text{coord}(d_j)\pm r\}, a \neq b, \)
\(d_a, d_b \in D_k(d_j)\)에 대해서, \(M(x) = 1\).

3단계. \(\forall d \in D_k(d_j), \forall d \in D_k(d_j) - D_k(d_1), \forall x \in \{\text{coord}(d)\pm r\} \)
에 대해서, \(M(x) = 0\).

위의 알고리즘에서 \(r\)은 블루투스 가용거리를 나타낸다.
\(M(x) = 1\)인 \(x\) 즉 \(d_i\)의 후보 위치좌표가 하나만 남을
매까지 알고리즘을 반복한다. 그림 3은 알고리즘의
적용 예를 보여준다. 그림에서와 같이 t 번째 주기에서
d₄ 기기는 인접한 d₁ 기기와 마련가지로 GPS
수신불가상태이기 때문에 자신의 위치정보를 복구할 수
없다. 그러나 d₄ 기기는 t 번째 주기에서 자신의
위치정보를 복구하며, 따라서 t+1 번째 주기에서
d₅ 기기도 d₄ 기기의 위치정보를 통해 자신의
위치정보를 복구한다.

4.2 시뮬레이션 결과
본 논문에서는 시뮬레이션을 통해 피험자의 손실된
GPS 정보가 얼마나나 복구되었는지를 관찰하였다. 그림
5는 실험지역 내의 사람 수 L 이 100명, 125명,
150명인 경우의 피험자의 GPS정보 복구율을 나타낸다.
이 때, 복구율은 식 (1)과 같이 계산한다.

복구율 = 복구된GPS정보
순실현GPS정보 (1)

실험지역 내의 사람은 임의의 위치에 배치되기 때문에
본 논문에서는 10번 실험한 평균과 표준편차를
구하였다(그림 5).

그림 5. 실험지역 사람수(기기 수)에 따른 위치정보
복구율 (각 10회 실험의 평균)

사람의 수가 적으면 GPS 수신불가 지역에서 이용
가능한 공유정보가 적기 때문에 복구율이 낮아진다.
실험결과 시뮬레이션 환경에서 100명이 배치되었을 때
GPS 손실 정보의 약 40%가 복구되었으며, 150명이
배치되었을 때는 거의 모든 손실정보가 복구되었다.
그림 6은 피험자가 440m를 이동하는 동안의 위치정보
정확도의 변화를 나타낸다. 그림 7은 앞의 실험에서
사람이 100명(그림 6~8) 일 때 각자 지도상의 사람
수를 보여준다.
5. 결 론

모바일 기기가 발달함에 따라 이를 이용한 다양한 서비스에 대한 관심이 높아지고 있다. 이들 서비스는 기본적으로 GPS에 의해 획득되는 위치정보에 기반하지만, 이는 낮은 전반들이 많은 도심과 같은 지역에서 정보손실이 발생하는 문제가 있다. 본 논문에서는 블루투스를 통해 주변기기들의 위치정보를 연속적으로 공유하여 구적기반으로 모바일 기기의 위치정보를 수집하는 방법을 제안하였으며, 이를 시뮬레이션 환경으로 모델링 하여 실험한 결과 좋은 성능을 보였다. 시뮬레이션 환경은 실제 환경보다 제약조건이 많지만, 실제로 GPS 손실이 자주 발생하는 도심지의 경우 인구밀도가 높고, 집과 건물의 경계가 명확하다는 점 등이 시뮬레이션 환경과 유사하다. 향후 연구로는 동적으로 변화하는 실제 환경을 밸리에이션 시스템으로 모델링 하는 것이다. 또한 무선네트워크의 신호파이어 등을 고려한 보다 정교한 위치확인 시스템의 구축을 목표로 하고 있다.

참고문헌

감사의 글. 본 연구는 (주)LG전자 지원을 받았음.