
54   International Journal of Fuzzy System Applications, 2(1), 54-70, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Classification, Fuzzy Network, Multi-Layer Perceptron, Particle Swarm Optimization, Radial 
Basis Function Network

INTRODUCTION

In the past few decades, information technol-
ogy and the World Wide Web (WWW) have 
created stacks of innovations in the area of 
marketing style of companies. More busi-
nesses and companies are collecting highly 
informative and valuable data in a large scale. 
The huge amount of data can be a gold mine 
for business management and marketing. It is 
therefore increasingly important to analyze the 

data. However, timely and accurately process-
ing tremendous volume of data with traditional 
methods (Michie et al., 1994) is a difficult task. 
For example, using multi-layer perceptron 
(MLP) in data mining is not likely produce any 
useful results (Edelstein, 1996), because it does 
not have a clean interpretation of the model and 
its longer training time can make frustration. 
The ability to analyze and utilize massive data 
lags far behind the capability of gathering and 
storing it. This gives rise to new challenges for 
businesses and researchers in the extraction of 
useful information.
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ABSTRACT
This paper proposes an algorithm for classification by learning fuzzy network with a sequence bound global 
particle swarm optimizer. The aim of this work can be achieved in two folded. Fold one provides an explicit 
mapping of an input features from original domain to fuzzy domain with a multiple fuzzy sets and the second 
fold discusses the novel sequence bound global particle swarm optimizer for evolution of optimal set of 
connection weights between hidden layer and output layer of the fuzzy network. The novel sequence bound 
global particle swarm optimizer can solve the problem of premature convergence when learning the fuzzy 
network plagued with many local optimal solutions. Unlike multi-layer perceptron with many hidden layers it 
has only single hidden layer. The output layer of this network contains one neuron. This network advocates a 
simple and understandable architecture for classification. The experimental studies show that the classifica-
tion accuracy of the proposed algorithm is promising and superior to other alternatives such as multi-layer 
perceptron and radial basis function network.
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Data mining-a core step of knowledge 
discovery in databases (Piatetsky-shapiro et 
al., 1996; Han & Kamber, 2001), is defined as 
a process of employing one or more computer 
learning techniques to automatically analyze 
and extract knowledge from vast amount of 
data contained within a database. The purpose 
of data mining is to identify trends and pat-
terns in data. Classification (Duda et al., 2001) 
is one of the widely used techniques of data 
mining. In addition to classification, there are 
many important tasks such as association rule 
mining (Agrawal, 1993), clustering (Jains & 
Dubes, 1988), regression analysis (Chen, 2011), 
summarization, etc. in the area of data min-
ing. However, classification is a fundamental 
activity in pattern recognition (Theodoridis & 
Koutroumbas, 2006; Bishop, 2006), data min-
ing and so forth. Given predetermined disjoint 
target classes {C1, C2,...,Cn}, a set of input fea-
tures {F1, F2, .., Fm} and a set of training data T 
with each instance taking the form <a1, a2, ..., 
am>, where ai <i=1,2,..., m> is in the domain 
of attribute Fi, i=1,2,…,m and associated with 
a unique target class label the task is to build 
a model that can be used to predict the target 
category for new unseen data given its input 
attribute values.

There are many classifiers like naïve 
Bayes (Robert, 2001; Winkler, 2003; Gelman, 
et al., 1995), linear discriminant (McLachlan, 
2004), k-nearest neighbour (Dasarathy, 1990; 
Herbrich, 2001), MLP (Bishop, 1995) and its 
variant, decision tree (Breiman et al., 1984; 
Quinlan, 1992), and many more are commonly 
available in the specialized literatures. We can 
use the existing techniques of pattern recogni-
tion for classification in the context of data 
mining but these algorithms were designed only 
for small dataset. Therefore, either we can prefer 
to design a new algorithm or we can reengineer 
the existing classification algorithms of pattern 
recognition such that a gamut of data can handle 
efficiently. Data mining does not compete 
with traditional methods. However, it offers 
better solutions in certain classes problems 
than traditional methods. Data mining methods 
and algorithms extract useful regularities from 

large data archives, either directly in the form 
of knowledge or indirectly as functions that 
allow predicting, classifying or representing 
regularities in the distribution of the data.

A neural network classifier like MLP is a 
parallel computing system of several intercon-
nected processor nodes. The strength of MLP 
is the ability to construct non-linear boundary 
with high classification accuracy. However, 
the main weakness of this network lies in its 
architectural complexity and training speed. 
It requires many passes to build. This means 
that creating the most accurate models can be 
computationally expensive. Craven and Shavlik 
(1997) was described a neural network learning 
algorithm that can suitably address the issues of 
model comprehensiveness and training speed. 
However, it leaves several rooms for carrying 
out more research on noisy and uncertain data.

The paper by Bellman et al. (1996) was 
the starting point in the application of fuzzy set 
theory to classification. Since then, researchers 
have found several ways to apply this theory to 
generalize the existing classification methods, 
as well as to develop new algorithms. There are 
two main categories of fuzzy classifiers: fuzzy 
if-then rule-based and non if-then rule fuzzy 
classifiers. The second group may be divided 
into fuzzy k-nearest neighbours and generalized 
nearest prototype classifiers (GNPC). Several 
approaches (Nauck & Kruse, 1997; Uebele et 
al., 1995; Chakraborty & Pal, 2004; Abe & 
Thawonmas, 1997; Roubos et al., 2003) have 
been proposed for automatically generating 
fuzzy if-then rules and tuning parameters of 
membership functions for numerical data. 
These methods fall into three categories: neural-
network-based methods with high learning 
abilities, genetic (evolution)-based methods 
with the Michigan and Pittsburg approaches, 
and clustering-based methods. There are several 
methods (e.g., Zogala, 2000; Ishibuchi et al., 
2001; Zhou & Khotanzad, 2007) that combine 
the categories that have proved as effective in 
improving classification performance.

Recently, a new direction in the fuzzy clas-
sifier design field has emerged: a combination of 
multiple classifiers using fuzzy sets (Kuncheva, 
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2002), which may be included in non if-then 
fuzzy classifier category. In general, there are 
two types of the combination: classifier selec-
tion and classifier fusion. In the first approach 
each classifier is an expert in some local area 
of the feature space. In the second approach all 
classifiers are trained over the whole feature 
space. Thus, in this case, we have competition, 
rather than complementation, among the fuzzy 
classifiers. Various methods (Chen, 2005; Luo et 
al., 2007; Hong et al., 2007) have been proposed 
for fuzzy classifier design; however, in contrast 
to statistical and neural pattern classifiers, both 
theoretical and experimental studies concerning 
fuzzy classifiers do not deal with the analysis 
of the influence of the classifier complexity on 
the generalization error.

Considering the best attributes of neural 
network, fuzzy, and swarm theory in this paper, 
we present a sequence bound global particle 
swarm optimizer technique to obtain a scalable 
classifier with high accuracy. Particle swarm 
optimization (PSO) (Kennedy & Eberhart, 
2001; Kennedy & Mendes, 2002) inspired 
by natural flocking and swarm behavior of 
birds and insects have gain popularity as an 
optimization tool. Although we can use other 
evolutionary techniques like genetic algorithms 
(GAs) (Goldberg, 1989; Michalewicz, 1994), 
compared to GAs, PSO algorithm (Liang et al., 
2006; Parrot & Li, 2006) possesses many attrac-
tive properties such as memory and constructive 
cooperation between individuals. Hence, it has 
more chance to fly into the better solution areas 
more quickly and discover reasonable quality 
solution much faster.

In PSO (Liang et al., 2006; Parrot & Li, 
2006) only few parameters are to be tuned. 
Unlike GA, the representations of the weights 
are difficult and the genetic operators have to 
be carefully selected or developed. Further, 
as there is no selection operator in PSO, each 
particle in an original population has a cor-
responding partner in a new population. From 
the point of the diversity of population, this 
property is better than GA, so it can avoid the 
premature convergence and stagnation in GA to 
some extent. The proposed technique contains a 

simple perceptron. The input data is converted 
with the fuzzy membership functions, which 
are then multiplied with the weights evolved 
by our novel sequence bound global particle 
swarm optimizer and fed to the perceptron. 
The sequence bound particle swarm optimizer 
is used for evolving a set of optimal weights for 
a particular architecture using the mean square 
error (MSE) criterion. The sequence bound 
global particle swarm optimizer is designed by 
limiting the velocity using a sequence bound 
method (Barrera & Coello, 2009) and the com-
prehensive learning particle swarm optimizer 
(Liang et al., 2006). The comprehensive learning 
particle swarm optimizer uses a novel learning 
strategy whereby all other particles historical 
best information is used to update a particle’s 
velocity. This strategy enables the diversity 
of the swarm to be preserved to discourage 
premature convergence.

The rest of the paper is organized as follows. 
The preliminary concepts of fuzzy network 
architecture and particle swarm optimization 
is briefly discussed. We discuss the proposed 
sequence bound global particle swarm optimizer 
for fuzzy network classifier. We cover the results 
obtained during experimental studies. Finally, 
with a point of future research directions the 
article is concluded.

PRELIMINARY

Fuzzy Network Architecture

The fuzzy network (Watanabe et al., 1993) is 
basically a flat network with only one hidden 
layer and hence, the learning algorithm used 
in this network becomes easy to comprehend. 
The architecture of this network model uses a 
simple perceptron. The input vector is expanded 
into a set of fuzzy sets depending on the char-
acteristics of the given data points. Each point 
of the input vector is mapped into the fuzzy 
sets. Therefore, the dimension of the given 
input vectors is mapped from lower to higher 
dimensions with fuzziness. Since the given input 
space is divided into fuzzy sub-spaces by the 
membership functions, the network has an abil-
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ity of non-linear mapping. The expanded input 
vectors effectively increase the dimensionality 
of the input vector and hence the hyper planes 
generated by the fuzzy network provide greater 
discrimination capability. Figure 1 shows a 
general architecture of a fuzzy network with 
three triangular membership functions.

In this architecture, each unit of the input 
layer is mapped to the triangular membership 
functions of the hidden layer. There are no con-
nection weights in between input and hidden 
layer. The given input vector is just a simple map-
ping from crisp domain to fuzzy domain. Each 
input vector <a1, a2, …, am> is the input of these 
membership functions (small, medium, and high) 
and their corresponding outputs Oij (i=1,2,…,m, 
and j=1,2,3) are the grades of the membership 
functions. These outputs are multiplied with 
weight vector and given to output layer neuron 
as an input, i.e., Oij.wij, i=1,2,..,m and j=1,2,3. The 
output unit has a sigmoidal function fsig given by: 
f S y

esig S( ) ˆ
( )

= =
+ −

1
1 l , where S is the sum 

of the inputs of the output unit, S O wij ij
ji

m

=
==
∑∑ .

1

3

1

 

and ŷ  is the output of the network. The con-
nection weights are modified by the delta-
learning rule. Let wijk(l) denote the value of 
synaptic weight wijk of neuron k excited by 
element Oijk(t) of the ith input vector xi  at time 
step t. according to delta learning rule, the 
weight adjustment Dw tijk ( )  applied to the 
synaptic weight wijk at time step t is denoted 
by: ∆w t e w O tijk i ijk( ) . ( ). ( )= h

 , where h  is a 
positive constant that determines the rate of 
learning as we proceed from one step in the 
learning process to another and e wi( )

 is the 
error function. In other words, the delta learn-
ing rule may be stated as “The adjustment made 
to a synaptic weight of a neuron is propor-
tional to the product of the error signal and the 
input signal of the synapse in question” (Haykin, 
1999).

C o n s i d e r  a  s e t  o f  r e c o r d s 
X x x xn= { , ,...., }

  

1 2 , each of which consists 
of a set of attributes x x x xi i i in= { , ,...., }1 2 . For 
any record x Xi Î , xij denotes the value of the 
jth attribute of ith record. Each xij is mapped to 
the fuzzy sets by the pre-defined sets of fuzzy 

Figure 1. Architecture of fuzzy network using three triangular membership functions
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m e m b e r s h i p  f u n c t i o n s  s u c h  a s 
f f f fm low med high= , , . As a result of this map-
ping each input vector transferred from crisp 
domain to fuzzy domain with higher dimension. 
Figure 2 illustrates an example of a simple 
mapping of a sample xi .

The number of fuzzy sets can be chosen as 
per the complexity of the problem. Increasing 
more number of fuzzy sets does not mean that the 
accuracy of the model will increases in contrast it 
degrades the overall performance of the system. 
In the context of data mining the discovered 
knowledge should not only accurate but also 
comprehensible to the user. Comprehensibility 
is important whenever discovered knowledge 
will be used for supporting a decision made by 
a human user. It is also fact that if the model 
is very complex than the comprehensibility 
decreases; as a result the user will not be able 
to interpret and validate it. Hence identifying 
optimal and the type of fuzzy sets is also an 
important research direction.

In order to use this architecture for clas-
sification, we modified this by introducing 
Gaussian membership functions and replace the 
delta-learning rule by sequence bound particle 
swarm optimization based learning. We will 
discuss the details procedure of the proposed 
method. A good survey of fuzzy neural networks 
can be found in Auckley and Hayashi (1994). 
Further, some of the related and recent work 
of fuzzy neural networks is provided in Wu et 
al. (2010), Park (2002), and Chen, Wu, and 
Wang (2009).

Particle Swarm Optimization

The particle swarm optimization algorithm is 
inspired by the metaphor of social interaction 
observed among insects or animals. The kind 
of social interaction modeled within a PSO is 
used to guide a population of individuals (called 
particles) moving towards the most promising 
area of the search space. In a PSO algorithm, 
each particle is a candidate solution equivalent 
to a point in a d-dimensional space, so the ith 
particle can be represented as xi = (xi1, xi2, . . ., 
xid). Each particle “flies” through the search 
space, depending on two important factors, 
pbesti = pi = (pi1, pi2, . . ., pid), the best position 
found so far by the current particle and gbest = 
pg = (pg1, pg2, . . ., pgd), the global best position 
identified from the entire population (or within 
a neighborhood). The rate of position change of 
the ith particle is given by its velocity vi = (vi1, 
vi2 . . . vid). Equation (1) updates the velocity 
for each particle, whereas equation (2) updates 
each particle’s position in the search space.

v t v t c rand p t

x t s p
id id p id

id p gd

( ) ( ) . .( ( )

( )) (

= − + −

− − +

1 1

1
1

.rand  2 (( ) ( ))t x tid− − −1 1 	
(1)

x t x t v tid id id( ) ( ) ( )= − +1 	 (2)

where t denotes the tth iteration; cp and sp are 
positive constants called the cognitive and social 
parameters respectively, and in general both the 

xi1 
xi2 
xi3 
. 
. 
xid 

Oi11 Oi12 Oi13 
Oi21 Oi22 Oi23 
Oi31 Oi32 Oi33 

. . . 

. . . 
Oid1 Oid2 Oid3 

Figure 2. Mapping of an instance from crisp domain to fuzzy domain
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value of cp and sp are equal to 2; rand1 and rand2 
are random numbers uniformly distributed in 
the range (0,1).

A parameter called inertia weight w is 
introduced by Shi and Eberhart (1998, 1999) 
in PSO to balance the global and local search 
ability of the particle. Therefore, equations (1) 
and (2) are modified as follows.

v t w v t c rand p t

x t s p
id id p id

id p

( ) . ( ) . .( ( )

( )) (

= − + −

− − +

1 1

1
1

.rand  2 ggd idt x t( ) ( ))− − −1 1 	
(3)

x t x t v tid id id( ) ( ) ( )= − +1 	 (4)

A large inertia weight facilitates a global 
search while a small inertia weight facilitates 
local search. Shi et al. (1998, 1999) avoided that 
by linearly decreasing the inertia weight from a 
relatively large value to a small one through the 
course of the PSO run, the PSO tends to have 
more global search ability at the beginning of 
the run and have more local search ability near 

the end of the run. They suggested that an inertia 
weight starting from 0.9 linearly decreasing to 
0.4 during a run be adopted to give the PSO a 
better performance. In some cases, an upper 
bound vmax and a lower bound vmin are used to 
clamp the velocities of the particles. A too small 
value of speed will cause the particles to get 
trapped in local optima; on the other hand, a 
too large value can cause the particle to oscil-
late around a position (Ozcan & Mohan, 1998).

The following algorithmic form of the 
global best version, gbest, of PSO reflects the 
star neighborhood sociometry structure. The 
social knowledge used to drive the movement 
of particles includes the position of the best 
particle from the entire swarm. In addition, 
each particle uses its history of experiences in 
terms of its own best solution thus far.

The further away a particle is from the 
global best position and its own best solution 
thus far, the larger the change in velocity to 
move the particle back toward the best solutions.

 

1) Initialize the swarm, P (t), of particles such that the position 


x ti( )  
of each particle p

i
 ∈ P(t) is random within the hyperspace, with t =0.

2) Evaluate the performance F of each particle, using its current position 


x ti( ) .
3) Compare the performance of each individual to its best performance thus 	

	 a. far: if f(


x ti( ) ) < pbest
i
 then, 

	 b. pbest
i
 = f(



x ti( ) ).
 

x x tpbest ii
= ( ) .

4) Compare the performance of each individual to the global best particle: 	

	 a. if f(


x ti( ) ) < gbest then, 
	 b. gbest = f(



x ti( ) ).
 

x x tgbest i= ( ) .
5) Change the velocity vector for each particle using:           
        
    

v t w v t c rand x x t s rand xi i p pbest i p gi
( ) ( ) ( ( )) (= × − + × × − + × ×1 1 2 bbest ix t−



( )) .
6) Move each particle to a new position: 

	 a. 
  

x t x t v ti i i( ) ( ) ( )= − +1         
	 b. t = t+1
7) Go to step 2, and repeat until convergence.

Algorithm 1. PSO_Algorithm
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OUR METHOD

In contrast to simple fuzzy network (Watanabe 
et al., 1993), the major contributions of the pro-
posed method is that it extends the application 
domain from feature extraction to classifica-
tion of data in data mining domain by using 
the Gaussian membership functions and our 
novel sequence bound global particle swarm 
optimizer based learning. The proposed method 
is divided into two phases. In the first phase 
the given input vector is mapped from crisp to 
fuzzy domain. Figure 3 shows the schematic 
diagram of mapping the dataset X to fuzzy do-
main of higher dimension. In the second phase 
the sequence bound particle swarm optimizer 
is described and used for training the network 
by evolving an optimal set of weights. The two 
phases will continue until the proposed network 
is trained enough.

Let the database X x x xn= { , ,..., }
  

1 2 repre-
sent a matrix of size n d´ , then X xij n d= ×( ) , 
i=1, 2, 3, …, n and j=1, 2, 3, .., d. Each element 
of the matrix is mapped into the following three 
Gaussian membership functions.

O x sm th x sm thij ij j j ij j j1
1
2

2 2( , , ) exp( ( ) / ( ) )= − −  	
(5)

O x me th x me thij ij j j ij j j2
1
2

2 2( , , ) exp( ( ) / ( ) )= − − 	
(6)

O x hg th x hg thij ij j j ij j j3
1
2

2 2( , , ) exp( ( ) / ( ) )= − − 	
(7)

where xij is the jth attribute value of the ith record, 
smj is the low value, hgj is the high value and 
mej is the middle value of the jth input feature 
and thj is taken as ( ) /hg smj j- 3 . Each ele-

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x11 x12 x13 … x1d 
x21 x22 x23 … x2d 
x31 x32 x33 … x3d 
x41 x42 x43 … x4d 
. . . . . 
. . . . . 
. . . . . 
xn1 xn2 xn3 … xnd 

o111 o121 o131 … o1d1 
o211 o221 o231 … o2d1 
o311 o321 o331 … o3d1 
o411 o421 o431 … o4d1 
. . . . . 
. . . . . 
. . . . . 
on11 on21 on31 … ond1 

o113 o123 o133 … o1d3 
o112 o222 o232 … o2d2 
     

  
o2d2 o2d3 
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. . 
. . 
. . 
ond2 ond3 

Figure 3. A cubical view mapping pattern of X from crisp domain to fuzzy domain
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ment of the input vectors is the input of these 
membership functions (low, medium, and high) 
and the outputs of the units of 



O  are the grades 
of the membership functions. The inputs of the 
unit in the output layer are O wijk ijk´ , where 
i=1,2,..,n, j=1,2,..,d, and k=1,2,3. The output 
unit has a sigmoid function fsig given by

ˆ ( ) ( exp( ))y f s si sig= = + −
1

1 l ,	

wherel  is constant and s is the sum of the 
inputs of the output unit and for a particular 
record the value of s can be written as:

s O wijk ijk
kj

d

=
==
∑∑ . .

1

3

1

The error ei obtained from the ith vector 
can be estimated as e w t yi i i( ) ( )



= −1
2

2

⇒ = − ×
==
∑∑e w t f O wi i sig ijk ijk
kj

d

( ) ( ( ))
 1

2
2

1

3

1

.

The mean squared error (MSE) is given 

by E w n e wi
i

n

( ) ( )
 

=
=
∑1

1

. Using this criterion 

as the fitness function, sequence bound global 
particle swarm optimizer evolves the optimal 
set of weights for the proposed algorithm.

Sequence Bound Global 
Particle Swarm Optimizer

The sequence bound global particle swarm 
optimizer is constructed by limiting the velocity 
of the particle by sequence bound and updating 
the velocity of any one particle by considering 
all particles’ personal bests.

Let us see how we can update the velocity 
by the novel strategy. In this learning strategy, 
we use the following updating equation:

 	 (8)

where f pid( )  defines which particles’ per-
sonal bests the particle i should follow. p

f pid( )

can be the corresponding dimension of any 
particles’ personal best including its own per-
sonal best, and the decision depends on prob-
ability t referred as learning probability, which 
can take different values for different particles. 
For each dimension of particle i, we generate 
a uniform random number from [0, 1]. If this 
random number is larger than t , the correspond-
ing dimension will learn from its own per-
sonal best; otherwise it will learn from another 
particle’s personal best. We employ the tourna-
ment selection of different neighborhood sizes 
when the particle’s dimension learns from 
another particle’s personal best as follows. The 
neighborhood size varies from large to small 
one (i.e., of 2) as the iteration increases.

1. 	 Randomly choose two particles (e.g., the 
neighborhood size is 2) out of the popula-
tion which excludes the particle whose 
velocity is updated.

2. 	 Compare the fitness values of these two 
particles’ personal bests and select the bet-
ter one. As the problem is a minimization 
problem so we define the fitness value 
smaller the better.

3. 	 Use the winner’s personal best as the ex-
emplar to learn from for that dimension. 
If all exemplars of a particle are its own 
personal best, we will randomly choose one 
dimension to learn from another particle’s 
personal bests corresponding dimension.

Limiting the velocity of the particles is 
computed at each generation according to the 
corresponding element of a sequence of terms 
obtained from a geometric series. A geometric 
series V is a sum of algebraic terms and is given 
by the equation (9).

V lr i
i

l
r= =

=

∞

−∑
0

1 , 	 (9)



62   International Journal of Fuzzy System Applications, 2(1), 54-70, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The geometric series V converges provided 
that |r| < 1 and l is a constant value. The ordered 
list of terms of a series with i = 0 to infinity 
is called a sequence. A known result is that, if 
the geometric series defined in equation (9) 
converges, then the elements of its sequence 
converge to zero.

We construct a limit for the velocities as 
follows: at the iteration t, the ith coordinate of 
the velocity of a particle is bounded by the term
r lt i , where r is a constant value with 0 < r < 1 
in order to guarantee the convergence to zero 
of the bound, and l x xi i i

= −[ ]max min  is the 
longitude of the search space in the ith coordi-
nate with i = 1 . . . n. To compute the velocity 
we use equation (8).

After computing vid(t) and before comput-
ing the position, we limit the velocity of each 
particle with the term r lt i .

During each iteration we calculate the error 
for all the particles in the distributed environ-
ment. The stopping criterion may allow the 
particles to iterate till they converge to a single 
decision. However, in this process, the particle 
gets over fitted and leading to poor performance 
of the classifier. Therefore, we need to be care-
ful about choosing the stopping criterion of the 
proposed method.

The following high-level pseudocode of 
the proposed method can give how the idea has 
been experimented and also validated.

EXPERIMENTAL STUDIES

In this section the performance of the pro-
posed model is evaluated using the real world 
benchmark classification datasets. The most 
frequently used in the area of neural networks 
and neuro-fuzzy systems are Wisconsin Breast 
Cancer (WBC), PIMA, WINE and BUPA Liver 
Disorders. All these datasets are taken from 
the UCI machine learning repository (Blake 
& Merz, 1998).

Description of the Datasets

Let us briefly discuss the datasets, which we 
have taken for our experimental setup.

•	 Wisconsin Breast Cancer Dataset: The 
dataset consists of d=9 features made on 
each of the 699 clinical cases of class c=2. 
The two distinct categories correspond to 
two different classes such as Benign and 
Malignant. The problem is to classify each 
test point to its correct cases based on the 
nine test.

•	 PIMA Indians Diabetes Dataset: This da-
taset consists of n = 8 numerical medical 
attributes and c=2 classes (tested positive 
or negative for diabetes). There are n=768 
instances. Further, data set related to the di-
agnosis of diabetes in an Indian population 
that lives near the city of Phoenix, Arizona.

•	 BUPA Liver Disorders Dataset: This 
dataset is related to the diagnosis of liver 

Table 1. Descriptions of the datasets 

Dataset Number of 
Patterns

Number of 
Attributes

Number of 
Classes

Patterns in 
Class 1

Patterns in 
Class 2

Patterns in 
Class 3

WBC 699 10 2 458 241

PIMA 768 8 2 500 268

BUPA 345 6 2 145 200

WINE 178 13 3 59 71 48
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disorders and created by BUPA Medical 
Research, Ltd. The dataset consists of d=5 
attributes and c=2 classes. There are n=345 
number of instances.

•	 WINE Dataset: This is a three-class prob-
lem. It has 178 instances and 13 attributes. 
The instances are distributed into three 
classes. Class 1 contains 59, class 2 contains 
71 and class 3 contains 48 patterns.

1. Initialize weight vectors w
i
 of the Swarm

 
2. Repeat (Generations) 
 
3. For each weight vector (i.e., Particle) 
 
4.    For each sample from the training vector 
 

	 4.1 Compute e wi( )


;

 	 4.2 SUM=SUM+e wi( )


;
5.   End For 
           

6. Compute the mean squared error E wi( )


;
 
7. End For 
 
8. Compute velocities of the Swarm by equation (8); 
 
9.  Limit the velocities;  
 
10. Update the position of the Particle; 
 
11. Until (Convergence occurs) 

Pseudo Code

Table 2. Results obtained from the proposed method 

Dataset Hit Rate % in Training Set Hit Rate % in Test Set

WBC 97.0858 95.5714

97.9656 97.1346

Mean Value 97.5257 96.353

PIMA 81.0156 75.9376

79.4532 75.1302

Mean Value 80.2344 75.5309

BUPA 75.3486 70.1745

76.9368 68.1502

Mean Value 76.1428 69.1476

WINE 96.46065 98.3707

93.31455 98.3145

Mean Value 94.8876 98.3426
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Table 1 presents a summary of the main 
features of each dataset that has been used in 
this study.

Methodology and Classification 
Performance

For the case of the Wisconsin Breast Cancer, 
PIMA Indians Diabetes and BUPA Liver Disor-
ders datasets, the total set of patterns was ran-

domly divided into two equal parts (database1.
dat and database2.dat). Each of these two sets 
was alternately used either as a training set or as 
a test set. As we use a stochastic method for data 
classification, result may vary from simulation 
to simulation. Each set has been simulated for 
50 times. As far as the parameter is concerned 
we selected the neighborhood size over differ-
ent iterations based on the following equation.

Table 3. Performance comparison of proposed method, RBF and MLP 

Dataset MLP RBF Proposed Method

Hit % in 
Training Set

Hit % in 
Test Set

Hit % in Train-
ing Set

Hit % in 
Test Set

Hit % in 
Training Set

Hit % in 
Test Set

WBC 97.0858 97.5714 89.714 90.831 97.714 96.652

97.9565 97.1346 91.977 89.714 98.0514 95.429

Mean Value 97.5257 96.353 90.8455 90.2725 97.8827 95.9955

PIMA 81.0156 75.9376 74.479 78.125 80.729 76.823

79.4583 75.1302 76.823 77.604 74.74 79.167

Mean Value 80.2349 75.5309 75.651 77.8645 77.7345 77.995

BUPA 75.3488 70.1745 70.349 68.208 72.093 74.566

76.9368 68.1502 71.676 65.698 71.512 73.41

Mean Value 76.1428 69.1476 71.0125 66.953 71.8025 73.988

WINE 96.46065 98.3707 80.899 84.27 98.876 96.629

93.31455 98.3145 76.404 85.393 100 95.506

Mean Value 94.8876 98.3426 78.6515 84.8315 99.438 96.0675

Figure 4. Performance of proposed method vs. RBF in training set
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nb t
swarm t if t swarm

otherwise
( )

| | | |
=

− < −


 2

2
,	

where |swarm| is the size of the swarm and t is 
denoted as iteration.

Similarly the value of the learning prob-
ability t , can be computed by the following 
equation. This equation is empirically deter-
mined.

ti e
e e

i
swarm=

−
+ −( )−

−1

1
0 05 0 45 0 5

10
10

10 1
1. . . . .| | 	

The results considered here is the average 
of 50 simulations. Table 2 summarizes the re-
sults obtained in the classification of these four 
datasets using the proposed method.

From Table 2 one can observed that for the 
case of WINE dataset on an average hit percent-
age in the training set is not better than the hit 

Figure 5. Performance of proposed method vs. RBF in test set

Figure 6. Hit percentage of training set performance comparison of proposed method with MLP
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percentage in test set. This shows that the 
model required more training even though the 
classification accuracy of the test cases is bet-
ter than training cases. In the case of PIMA, 
WBC and BUPA datasets, on an average, the 
hit percentage of training set is significantly 
better than that of test set.

Table 3 shows the comparison of the 
proposed method with RBF and MLP. The 

comparative performance of proposed method 
with RBF is superior, but it is competitive 
with MLP. Figure 4 shows the performance 
comparison of proposed method with RBF by 
considering the hit percentage of training sets. 
The result obtained from proposed method is 
outperforming the results obtained from RBF. 
Similarly, Figure 5 shows the performance 
comparisons of proposed method with RBF 

Figure 7. Hit percentage of test set performance comparison of proposed method with MLP

Table 4. Standard deviations obtained from 50 simulations of proposed method 

Dataset Standard Deviation in Training Set Standard Deviation in Test Set

WBC 0.2256 0.4312

0.3432 0.3307

Mean Value 0.2844 0.381

PIMA 0.4331 1.2351

0.7613 0.7287

Mean Value 0.5972 0.9819

BUPA 1.1693 0.9901

0.4265 1.3746

Mean Value 0.7979 1.1824

WINE 1.424589 0.679323

1.689402 1.062752

Mean Value 1.5570 0.8710
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by considering the hit percentage of test set. 
The results are promising, but Figure 6 and 7 
shows a very close performance of proposed 
method and MLP. In other words we can claim 
the obtained result from proposed method is 
competitive with MLP in terms of accuracy.

Dependability of the Classifier

In addition to the classification accuracy ob-
tained from a classifier, dependability of a model 
resides on the consistency of the results ob-
tained. To verify the dependability of the model 

standard deviation of the results obtained in 50 
simulations is taken and presented in Table 4.

Efficiency of the Classifier

Efficiency of the classifier may be evaluated in 
different ways. Here we present the error curves 
at Figure 8 for uniform 500 iterations. The rate 
of convergence of the models clearly depicts 
the efficiency of the models. The Mean Squared 
Error (MSE) values have been evaluated from 
the average of the squared error of 30 particles 
distributed in the search space.

Figure 8. Error obtained from a) WBC b) PIMA c) BUPA and d) WINE



68   International Journal of Fuzzy System Applications, 2(1), 54-70, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In this experiment, our objective is to select 
suitable weights for the network, which can 
yield better or competitive results by minimiz-
ing error. In addition to this we have to ensure 
that the network should not be over trained. 
Therefore, the iterations suitable for breast 
cancer are taken from the range [50-150] and 
the range of other three dataset is lies between 
the closed interval [100, 200].

CONCLUSIONS AND FUTURE 
RESEARCH PATHS

In this paper, we have evaluated the proposed 
method for the task of classification in data 
mining. The proposed method expands the 
given set of inputs into three types of fuzzy sets 
such as low, medium and high with the Gauss-
ian membership function. These inputs are fed 
into a simple perceptron. Our novel sequence 
based global particle swarm optimizer is used 
for evolving a set of weights. The weight vectors 
are represented by particles of the swarm and 
are being spread in a distributed environment. 
The experimental studies demonstrated that 
proposed method performs the classification 
task quite well. The efficiency of the proposed 
method is competitive in terms of its rate of 
convergence. The future work includes the 
study of optimal number of fuzzy sets required 
to map an input feature into higher dimensions. 
Tuning of membership functions in this context 
is leaving a room for further work. The positive 
results encountered in this paper suggest that 
additional experiments may provide further 
insight into the benefits of fuzzy neural networks 
trained with sequence bound global particle 
swarm optimizer.
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