
KES 2008

A comprehensive survey on functional link neural networks
and an adaptive PSO–BP learning for CFLNN

Satchidananda Dehuri Æ Sung-Bae Cho

Received: 14 March 2009 / Accepted: 14 June 2009

� Springer-Verlag London Limited 2009

Abstract Functional link neural network (FLNN) is a

class of higher order neural networks (HONs) and have

gained extensive popularity in recent years. FLNN have

been successfully used in many applications such as system

identification, channel equalization, short-term electric-

load forecasting, and some of the tasks of data mining. The

goals of this paper are to: (1) provide readers who are

novice to this area with a basis of understanding FLNN and

a comprehensive survey, while offering specialists an

updated picture of the depth and breadth of the theory and

applications; (2) present a new hybrid learning scheme for

Chebyshev functional link neural network (CFLNN); and

(3) suggest possible remedies and guidelines for practical

applications in data mining. We then validate the proposed

learning scheme for CFLNN in classification by an

extensive simulation study. Comprehensive performance

comparisons with a number of existing methods are

presented.

Keywords Classification � Functional link neural

networks � Chebyshev functional link neural network �
Particle swarm optimization � Back-propagation learning

1 Introduction

In recent years, artificial neural networks (ANNs) [1–5]

have gained extensive popularity. Research activities from

McCulloch–Pitts model of neuron [6] to higher order

neuron [7] are considerable and the literature is growing

day-by-day. ANN have been used increasingly as a

promising modeling tool in almost all areas of human

activities where quantitative approaches can be used to

help decision making (e.g., functional approximation [8–

10], rule extraction [11–14], pattern recognition and clas-

sification [15–17], forecasting and prediction [18–31],

business [32, 33], civil engineering [34], electrical engi-

neering [35], and medical area [36–38]). Indeed ANNs

have already been treated as a standard nonlinear alterna-

tive to traditional models for pattern classification, time

series analysis, and regression problems. ANNs are capable

of generating complex mapping between input and output

space, therefore, arbitrarily complex nonlinear decision

boundaries can be approximated by these networks.

In spite of the development of various types of ANNs,

higher order neural networks (HONs) [39–41] have

recently been treated as an attractive method to eradicate

some of the limitations that exist in non-HONs. Although

the main focus of this paper is on FLNN, it is also very

crucial to introduce the HONs because the root of FLNN is

HON. The following few lines can guide the readers about

the motivation behind HONs.

Feed-forward networks based on single layer of linear

threshold logic units exhibit fast learning, e.g., the simple

perceptron [42] can realize a linearly separable dichotomy

in a finite number of learning steps, however, does not

converge or approximate non-linear decision boundaries.

Adaline [43, 44] tries to find a solution which minimizes a

mean square error criterion by using gradient descent

S. Dehuri (&)

Department of Information and Communication Technology,

Fakir Mohan University, Vyasa Vihar,

Balasore 756019, Orissa, India

e-mail: satchi.lapa@gmail.com

S.-B. Cho

Soft Computing Laboratory, Department of Computer Science,

Yonsei University, 262 Seongsanno, Seodaemun-gu,

Seoul 120-749, Korea

e-mail: sbcho@cs.yonsei.ac.kr

123

Neural Comput & Applic

DOI 10.1007/s00521-009-0288-5

learning algorithm to adjust the weights. However, it dis-

crimination capability is also limited to linearly separable

problems as in the case of the single-layered perceptron.

The fraction of dichotomies that are linearly separable

drastically reduces with increase in input dimension [45].

Moreover, many real problems involve approximating non-

linear functions or forming multiple non-linear decision

regions. This limits the applicability of simple single-lay-

ered networks of linear threshold units.

The addition of a layer of hidden units dramatically

increases the power of layered feed-forward networks.

Indeed, networks with a single hidden layer using arbitrary

squashing functions are capable of approximating any

measurable function from one finite dimensional space to

another to any desired degree of accuracy provided suffi-

ciently many hidden units are available [46]. In particular,

the multi-layer perceptron (MLP) using the back-propa-

gation (BP) learning algorithm has been successfully

applied to many applications. However, the training speeds

for MLP are typically much slower than those for feed-

forward networks comprising a single layer of linear

threshold units due to BP of error induced by multilayering.

Moreover, the problems such as local minima trapping,

saturation, weight interference, initial weight dependence,

and overfitting, make MLP training difficult. Additionally,

it is also very difficult to fix the parameters like number of

neurons in a layer, and number of hidden layers in a net-

work, thereby deciding a proper architecture is not that

easy.

An easy way to avoid these problems consists of

removing the hidden layers. This may sound a little

inconsiderate at first, since it is due to them that nonlinear

input–output relationships can be captured. Encouragingly

enough, the removing procedure can be executed without

giving up nonlinearity, provided that the input layer is

endowed with additional higher order units [47, 48]. In

other words, higher-order correlations among input com-

ponents can be used to construct a higher-order network to

perform non-linear mappings using only a single layer of

units [7]. All these prompted the field of HONs [49, 50]

like functional link neural networks (FLNNs) [51–54],

ridge polynomial neural networks (RPNNs) [55–57], pi-

sigma neural networks [58–65], radial basis functions [66–

70] and so on.

Since then several authors, including Lee et al. [71],

Peretto and Niez [72], Psaltis and Park [73], Gardner [74],

Abbott and Arian [75], and Horn and Usher [77] (see also

[76], Chap. 5]), have demonstrated the improved capacity

of higher-order neural networks by simulations and by

lower bounds on the capacity that are derived using a

nonrigorous analysis.

Thus far we have discussed where is the root of FLNN

but not yet discussed the detail trends of FLNN. In Sect. 3

we will give a complete road map of FLNN. Let us discuss

the motivation behind the second achievement of this

paper.

In the context of training FLNN, the mostly used algo-

rithm is the BP-learning algorithms (FLNN with various

type of learning schemes are given in Tables 1 and 2 of

Sect. 3). Hence, the inherent problems that exist in

BP-learning algorithm [78–80] are also frequently

encountered in the use of this algorithm. First, the

Table 1 Summary of the

FLNNs (1)

BP back propagation, EBP error

back propagation, DBP dynamic

back propagation, NLMS
normalized least mean square

Reference Method Application Basis Function Learning

[81] ClFLNN Classification Polynomial Pseudoinverse

[82] PFLNN Planning Polynomial –

[83] SiFLNN System identification Trigonometric BP

[84] EFLN Classification Polynomial GA ? BP

[85] SyFLNN System identification Trigonometric DBP

[86] CeFLNN Channel equalization Trigonometric BP

[87] COFLNN Channel equalization Chebyshev NLMS

[88] ClaFLNN Classification Trigonometric BP

[89] IpFLNN Intelligent pressure sensor Chebyshev, Legendre, power series BP

[90] GFLNN Classification Trigonometric BP

[51] FLANN Classification Trigonometric BP

[91] DwFLNN Digital watermarking Trigonometric BP

[92] IsFLNN Intelligent sensors Trigonometric BP

[93] ElfFLNN Electric load forecasting Trigonometric BP

[94] CcFLNN Carrageenan concentration Polynomial EBP

[95] IeFLNN Insecurity estimation Trigonometric Adaptive

[96] ClasFLNN Classification Sigmoidal Adaptive

Neural Comput & Applic

123

BP-learning algorithm easily get trapped in local optima

especially for those non-linearly separable classification

problems. Second, the convergence speed of the BP

learning is too slow even if the learning goal, a given

termination error, can be achieved. In addition, the con-

vergence behavior of the BP-learning algorithm depends

very much on the choices of initial values of the network

connection weights as well as the parameters in the algo-

rithm such as the learning rate and momentum. But we can

advocate that if the search for the BP-learning algorithms

starts from the near optimum with a small tuning of the

learning parameters, the searching results can be improved.

We can harness the power of genetic algorithms (GAs)

[107–109] and particle swarm optimization (PSO) [110] for

training the FLNN to reduce the local optimality and speed

up the convergence. But training using genetic algorithm is

not advisable because of the following limitations: in the

training process it requires encoding and decoding opera-

tors which are commonly treated as a long standing barrier

of neural networks researchers. The problem of applying

genetic algorithms to train neural networks may be unsat-

isfactory because recombination operators incur several

problems, such as competing conventions [111] and the

epistasis effect [112]. For better performance, real coded

genetic algorithms [113, 114] have been introduced.

However, they generally employ random mutations, and

hence, still require lengthy local searches near a local

optima. On the other hand PSO have some attractive

properties; it retains previous useful information, whereas

GA destroy the previous knowledge of the problems once

the population changes. PSO encourages constructive

cooperation and information sharing among particles,

which enhances the search for a global optimal solution.

Successful applications of PSO to some optimization

problems such as function minimization [115, 116] and

neural networks design [117, 118] have demonstrated its

potential. It is considered to be capable of reducing the ill

effect of the BP-learning algorithm of neural networks,

because it does not require gradient and differentiable

information.

Unlike the GA, the PSO algorithm has no complicated

operators such as crossover and mutation. In the PSO

algorithm, the potential solutions, called as particles, are

obtained by flowing through the problem space by fol-

lowing the current optimum particles. Generally speaking,

the PSO algorithm has a strong ability to find the most

optimistic result, but it has a disadvantage of easily getting

into a local optimum. After suitably modulating the

parameters for the PSO algorithm, the rate of convergence

can be speeded up and the ability to find the global opti-

mistic result can be enhanced. The PSO algorithms search

is based on the orientation by tracing pbest that is each

particle’s best position in its history, and tracing gbest that

is all particles best position in their history, it can rapidly

arrive around the global optimum. However, because the

PSO algorithm has several parameters to be adjusted by

empirical approach, if these parameters are not appropri-

ately set, search will proceed very slowly near the global

optimum. Hence to cope with this problem, we suggested

an adaptive PSO (aPSO) and back-propagation (BP)

algorithm as a learning method of Chebyshev functional

link neural network (CFLNN) for fine tuning the connec-

tion weights. The rationale of Chebyshev basis functions is

given in Sect. 4.

The concept of Chebyshev functional link neural net-

work is not new, but its usage for approximation of deci-

sion boundaries in classification problem is the art of this

work. The training CFLNN uses the aPSO for global search

in the beginning stage, and then BP-learning algorithm to

do local search around the global optimum gbest. We have

shown its effectiveness of classifying the unknown pattern

using the publicly available datasets obtained from

Table 2 Summary of the

FLNNs (2)

BP back propagation, MSE
mean squared error, CCI
co-channel interference, DCS
digital communication system

Reference Method Application Basis Function Learning

[97] BpFLNN Bankruptcy prediction Polynomial Genetic algorithm

[98] DBRVFLNN Off-line recognition

of English script

Random vector BP

[99] IraFLNN Interval regression analysis Trigonometric Genetic algorithm

[100] AFLNN Function approximation Random vector BP

[54] CoFLNN Control Random vector Delta rule conjugate

gradient

[101] RDFFLNN Channel equalization Trigonometric BP

[102] DfFLNN CCI in DCS Trigonometric MSE

[103] QsFLNN QAM Signal Trigonometric BP

[104] SyiFLNN System identification Chebyshev BP

[105] RDFCFLNN Channel equalization Chebyshev BP

[106] CFLNN System identification Chebyshev BP

Neural Comput & Applic

123

University of California, Irvine (UCI) [119] repository. The

computational results are then compared with FLNN [51–

56] with a generic basis functions and EFLN. From the

comparative study we observed that the performance of the

proposed one outperforms FLNN and EFLN in terms of

classification accuracy.

Findings A clear road map of FLNNs development over

the years and their success in various fields. FLNN with a

new learning scheme for classification.

Originality/value The reader will appreciate the com-

prehensive survey of FLNNs and the proposed learning

scheme for CFLNN in classification, and hopefully be

encouraged to explore further the possibility of using the

proposed method to achieve improved performance in their

own applications.

Outline The rest of this paper is organized as follows.

The basic architecture of functional link neural networks

(FLNNs) and various learning schemes are discussed in

Sect. 2. Section 3 provides a road map of how FLNN has

developed over time, which will then provide readers with

the means to understand the proposed one. In Sect. 4, we

have presented the proposed learning scheme for CFLNNs

and its application in classification. Experimental results

are demonstrated in Sect. 5. Section 6 concludes the article

with future research areas of FLNN.

2 Architectures and learning of FLNN

In this section we will discuss the basic architecture and

learning of FLNN. Although, there are a wide variety of

architectures and learning schemes of FLNN so far

developed, we identified four most predominant architec-

tures and their learning schemes for sharpening the

knowledge. These architectures are varied based on their

usage of basis function for enhancement of input patterns.

2.1 Random variable functional link neural networks

(RVFLN)

Pao et al. in 1992 [120] has proposed a functional link

neural network named as random vector functional link

network (RVFLN). The theoretical basis of RVFLN is

primarily based on Theorem 2 by Hornik et al. [46, 121].

The following definition and theorems can be the pri-

mary theoretical realization of RVFLN.

Definition For any measurable function vð:Þ : Rr ! R

and r 2 N;
PQrðvÞ be the class of functions, ff : Rr !

R : f ðxÞ ¼
Pq

j¼1 bj �P
lj
k¼1vðAjkðxÞÞ; x 2 Rr; bj 2 R;Ajk 2

Ar; lj 2 N; q ¼ 1; 2; . . .g, where Ar is the set of all affine

functions from Rr to R. For the special case of lj = 1, we

have the
P

-networks.

Theorem 1 For every continuous nonconstant function v,

every r, and every probability measure l on

ðRr;BrÞ;
PQrðvÞ is ql dense in Mr, where l is a proba-

bility measure taken for convenience to describe the rela-

tive frequency of occurrence of input patterns l, Br is the

Borel field of Rr, and Mr is the set of all Borel measurable

functions from Rr to R.

According to Hornik et al. [46, 121], the significance of

this theorem is that single hidden layer feed-forward net-

works can approximate any measurable function arbitrarily

well, regardless of the continuous nonconstant function v
used, regardless of the dimension of the input space r, and

the input space environment l.

Theorem 2 For every squashing function W, every r,

and l on (Rr, Br), Rr(W) is uniformly dense on compacta in

Cr and ql dense in Mr (where Cr is the set of continuous

functions from Rr to R, and Cr is a subset of Mr).

This theorem says that if a function f is a mapping from

Rr to R, then that function can be approximated arbitrarily

well by

f ¼
Xq

j¼1

bjvðAjxþ bjÞ: ð1Þ

This can be implemented in terms of a single hidden layer

feed forward net with all weights Aj and bj to be learned (as

well as the thresholds) with BP, or it can be implemented

with a flat net known as functional link neural net.

The RVFLN generates Aj and bj randomly, and must

learn only bj. This results in a flat-net architecture for

which only weights bj must be learned. Learning is the

nature of quadratic optimization and is extremely rapid.

Fig. 1 Random vector functional link network

Neural Comput & Applic

123

The system architecture is shown in Fig. 1. The simple

algorithm for RVFLN can be described as follows: for

supervised learning the inputs are enhanced to xp with

elements (xp1, xp2, …, xpj) and let the target output of the

pattern xp be tp. Initially, the algorithm assigns the weight

bj random values. It calculates the output op linearly as

op = Rbjxpj. For each input pattern the changes in the

weights are taken to be

Dbpj ¼ gðtp � opÞxpj: ð2Þ

The changes are calculated for all the patterns in the

training set, and after each such presentation the weights

are updated according to

bjðk þ 1Þ ¼ bjðkÞ þ RpDbpj: ð3Þ

Updating is continued until the values of the weights bj

does not change significantly. The value of the parameter g
may be increased as tp - op decreases.

2.2 Functional link neural networks with generic basis

In this architecture the input pattern of a functional-link net is

a tensor representation. Pao [48] demonstrated that the tensor

representation is very effective in classification. Therefore, it

is important for us to discuss this model as an alternative to

RVFLN. In the tensor model, a feature of x, say xi, can be

enhanced as xixj, xixjxk, and xixjxkxl and so on, where

i B j B k B l. It is observed that an original tensor repre-

sentation contains many higher-order terms. For instance, an

enhanced pattern of x = (x1, x2, x3) with the tensor repre-

sentation can be generated as (x1, x2, x3, x1
2, x2

2, x3
2, x1x2, x1x3,

x2x3, x1
2x2, x1

2x3, x1x2
2, x2

2x3, x1x3
2, x2x3

2, x1
3, x2

3, x3
3, x1x2x3). It can

be seen that a large number of terms in the tensor represen-

tation will be generated as the dimensions of x increases.

Hence, Pao [48] suggested that higher-order terms beyond

the second order such as x2x3
2 and x1x2x3, are not required. In

addition, two or more equal indices in the enhanced pattern

should be omitted. However, it needs proper investigation.

For instance, an acceptable tensor representation of (x1, x2,

x3) is (x1, x2, x3, x1x2, x1x3, x2x3).

A functional-link net with single output node and

n ? n(n - 1)/2 input nodes is a one-layer feed-forward

network, where y is the actual output corresponding to the

input pattern x, and n is the number of input features. Let

the tensor of x be represented as xt = hx1, x2, …, xn, x1x2,

x1x3, …, xn-1xni. Let f denote the output node’s activation

function or sigmoid function, and h be a bias in f. Without

loss of generality, f is defined as follows:

f ðsÞ ¼ 1

1þ expð�sÞ ; ð4Þ

where s is equal to wxt - h such that by ¼ f ðsÞ: Here, wxt is

an aggregated value which is the inner product of w with xt.

In principle, x can be categorized as one class or the other

class if the sigmoid function’s output value is not below or

below 0.5 [38]. Thus, square errors denoted by E between

the actual and desired outputs of individual training

patterns can be measured as

E ¼ 1

2

Xn

i¼1

ðyi � byiÞ2; ð5Þ

where yi and byi are the desired and actual output of the ith

input training pattern, respectively, and n is the number of

training pattern. By the well-known BP-learning algorithm

[122], the training phase is continued to update w and h
until a convergent condition is reached. For instance, if E is

below a pre-specified value, then the learning algorithm

can be stopped.

2.3 Functional link neural networks with trigonometric

basis

The basic architecture of this model is same as the previous

two models, but only difference we can observe here is in

the selection of basis functions. The details of this model is

discussed in [83] and some of the important points are

analyzed below.

The learning of a FLNN may be considered as approx-

imating or interpolating a continuous, multi-variate func-

tion f(X) by an approximating function fW(X). Recall that in

FLNN a set of basis functions U and a fixed number of

weight parameters W are used to represent fW(X). With a

specific choice of a set of basis functions, the problem is

then to find the weight parameters W that provides the best

possible approximation of f on the set of input–output

examples. Hence, the most important point is how to

choose the basis functions to obtain better approximation

and is also an active research area.

Let us consider a set of basis functions � ¼ f/i 2
LðAÞgi2I with the following properties: (1) /1 = 1, (2) the

subset � j ¼ f/i2�g j
i¼1 is linearly independent set, i.e., ifPN

i¼1ðwi/iÞ ¼ 0, then wi = 0 for all i = 1,2, …, j, and (3)

supj½R j
i¼1k/ik2

A�
1=2\1 . Let �N ¼ f/gN

i¼1 be a set of basis

functions to be considered for the FLNN. Thus, the FLNN

consists of N basis functions f/1;/2; . . .;/Ng 2 �N with

the following input–output relationship for the jth output:

byj ¼ qðsjÞ; sj ¼
XN

i¼1

ðwji/iðXÞÞ; ð6Þ

where X 2 A � Rn, i.e., X = [x1, x2, …, xn]T is the input

pattern vector, by 2 Rm, i.e., by ¼ ½by1; by2; . . .; bym�
T

is the

output vector and wj = [wj1, wj2, …, wjN] is the weight

vector associated with the jth output of the FLNN. The

non-linear function q(.) = tanh(.).

Neural Comput & Applic

123

Considering the m-dimensional output vector, (6) can be

written as

S ¼ WU; ð7Þ

where W is a (m 9 N) weight matrix of the FLNN given by

W = [w1, w2, …, wm]T, U = [/1(X), /2(X), …, /N(X)]T is

the basis function vector, and S = [S1, S2, …, SN]T is a

matrix of linear outputs of the FLNN. the m-dimensional

output vector by may be given by

by ¼ qðSÞ ¼ fWðXÞ: ð8Þ

The network is trained like previous models (as discussed

above) but in the present context is summarized below:

Let K patterns be applied to the network in a sequence

repeatedly. Let the training sequence be denoted by (Xk, yk)

and the weight of the network be W(k), where k is the

iteration. Referring to (6) the jth output of the FLNN at

iteration k is given by

byjðkÞ ¼ q
XN

i¼1

ðwjiðkÞ/iðXkÞÞ
 !

¼ qðwjðkÞ/TðXkÞÞ; ð9Þ

for all X [A and j = 1, 2, …, m, where /(Xk) = [/1(Xk),

/2(Xk), …, /N(Xk)]. Let the corresponding error be denoted

by ejðkÞ ¼ yjðkÞ � byjðkÞ:
Using the BP algorithm for a single layer, the update

rule for all the weights of the FLNN is given by

Wðk þ 1Þ ¼ WðkÞ þ ldðkÞ/ðXkÞ; ð10Þ

where (W(k))m 9 N weight matrix of the FLNN, d and l
are the error and learning rate, respectively.

Let us discuss the motivations behind trigonometric

polynomial as the basis functions of the FLNN. Without

loss of generality, for all the polynomials of Nth order with

respect to an orthonormal system {/i(u)}i=1
N the best

approximation in the metric space L2 is given by the Nth

partial sum of its fourier series with respect to the system.

Thus, the trigonometric polynomial basis functions provide

a compact representation of the function in the mean square

sense. However, when the outer product terms were used

along with the trigonometric polynomials for functional

expansion, better results were obtained in the case of

learning the function [120].

2.4 Functional link neural networks with Chebyshev

polynomial

It is well known that non-linear approximation capacity of

the Chebyshev orthogonal polynomial is very powerful by

the best approximation theory [123]. Combining the char-

acteristics of the FLNN and Chebyshev orthogonal poly-

nomial resulted in a new FLNN named Chebyshev FLNN

(CFLNN) [105, 106, 124]. The basic principles of this

method is same as previously discussed model, but the

basis function considered here are Chebyshev polynomials.

The details of this model is discussed in Sect. 4, as the

proposed learning scheme is used in this model for clas-

sifying the unknown pattern.

3 Functional link neural networks: a road map

FLNNs are higher-order neural networks without hidden

units introduced by Klassen and Pao [125] in 1988. Despite

their linear nature, FLNNs can capture non-linear input–

output relationships, provided that they are fed with an

adequate set of polynomial inputs, or the functions might

be a subset of a complete set of orthonormal basis functions

spanning an n-dimensional representation space, which are

constructed out of the original input attributes [126].

In contrast to linear weights of the input patterns pro-

duced by the linear links of artificial neural network, the

functional link acts on an element of a pattern or on the

entire pattern itself by generating a set of linearly inde-

pendent functions, then evaluating these functions with the

pattern as the argument. Thus class separability is possible

in the enhanced feature space. For example, in an exclu-

sive-OR problem which is a non-linearly separable prob-

lem consisting of four patterns, {(0,0), (0,1), (1,0), (1,1)},

the corresponding enhanced patterns with the tensor rep-

resentation of these patterns are {(0,0,0), (0,1,0), (1,0,0),

(1,1,1)}. It can be observed that an exclusive-OR problem

is thus transformed as a linearly separable problem.

Let us consider a two-dimensional input sample x = [x1,

x2]. This sample has been mapped to a higher dimensional

space by functional expansion using polynomials with

certain degrees. For example, two attributes yield six

polynomials up to degree 2, (i.e., (1, x1, x2, x1
2, x2

2, x1.x2)). In

general, for a D-dimensional classification problem there

are
ðDþrÞ!

D!:r! possible polynomials up to degree r. For most of

the real life problems, this is too big number, even for

degree 2, which obviously discourages us to achieving our

goal. However, we can still resort to constructive and

pruning algorithms in order to address this problem. In fact

Sierra et al. [84] has proposed a new algorithm for the

evolution of functional link networks (EFLN) which makes

use of a standard GAs [127] to evolve near minimal linear

architectures. Moreover, the complexity of the algorithm

still needs to be investigated.

However, the dimensionality of many problems itself is

very high and further increasing the dimensionality to a

very large extent may not be an appropriate choice. So, it is

advisable and also a new research direction to choose a

small set of alternative functions, which can map the

function to the desired extent with an output of significant

Neural Comput & Applic

123

improvement. FLNN with a trigonometric basis functions

for classification (FLANN), as proposed in [51] is obvi-

ously an example. Note that Chebyshev FLNN is also

another improvement in this direction, the detailed is dis-

cussed in Sect. 4.

Let us survey some of the potential contributions

towards FLNNs and their successful applications in variety

of problems.

Pao et al. [54] has presented a functional link neural

network (CoFLNN) to learn the control systems. The

reported results have several beneficial properties than

generalized delta rule net with hidden layer and BP

learning.

Haring et al. [81] has proposed an algorithm (ClFLNN)

that uses evolutionary computation (specifically genetic

algorithm and genetic programming) for the determination

of functional links (one based on polynomials and another

based on expression tree) in neural network. Patra et al.

[86] has proposed a CeFLNN and applied to the problem of

channel equalization in a digital communication channel. It

relies on BP-learning algorithm.

Haring et al. [88] has proposed a ClaFLNN for different

ways to select and transform features using evolutionary

computation and shows that this kind of selection of fea-

tures is a special case of so-called functional links.

Hussain et al. [102] has described a new approach for

the decision feedback equalizer (DFE) based on the func-

tional-link neural network (DfFLNN). The structure is

applied to the problem of adaptive equalization in the

presence of intersymbol interference (ISI), additive white

Gaussian noise, and co-channel interference (CCI). The

experimental results provide significantly superior bit-error

rate (BER) performance characteristics compared to the

conventional methods.

Chen et al. [100] has presented an adaptive implemen-

tation of the functional-link neural network (AFLNN)

architecture together with a supervised learning algorithm

named Rank-Expansion with Instant Learning (REIL) that

rapidly determines the weights of the network. The beauty

of their proposed algorithm is one-shot training as opposed

to iterative training algorithms in the literature.

Dash et al. [93] has proposed a ElfFLNN with trigono-

metric basis functions to forecast the short-term electric

load. Panagiotopoulos et al. [82] has reported better results

by applying FLNN for planning in an interactive environ-

ment between two systems: the challenger and the

responder. Patra et al. [83] has proposed a FLNN with BP

learning (SiFLNN) for identification of non-linear dynamic

systems. Moreover, Patra et al. [103] has used FLNN to

adaptive channel equalization in a digital communication

system with 4-QAM signal constellation named as

QsFLNN. They compared the performance of the FLNN

with a multilayer perceptron (MLP) and a polynomial

perceptron network (PPN) along with a conventional linear

LMS-based equalizer for different linear and nonlinear

channel models. Out of the three ANN equalizer structures,

the performance of the FLANN is found to be the best in

terms of MSE level, convergence rate, BER and compu-

tational complexity for linear as well as nonlinear channel

models over a wide range of SNR and EVR variations.

With the encouraging performance of FLNN [83, 86,

103], Patra et al. [89] further motivated and came up with

another FLNN known as IpFLNN with three sets of basis

functions such as Chebyshev, Legendre and power series to

develop an intelligent model of the CPS involving less

computational complexity. In the sequel, its implementa-

tion can be economical and robust.

Park and Pao [98] has reported the performance of a

holistic-styled word-based approach to off-line recognition

of English language script. Authors combined the practices

of radial basis function neural net (RBNN) and the random-

vector functional-link net approach (RVFLN) and obtained

a method called the density-based random-vector func-

tional-link net (DBRVFLN) and it is helpful in improving

the performance of the word recognition.

In [84] a genetic algorithm for selecting an appropriate

number of polynomials as a functional input to the network

has been proposed by Sierra et al. and applied to the classi-

fication problem. However their main concern was selection

of optimal set of functional links to construct the classifier. In

contrast, the proposed method gives much emphasis on how

to develop the learning skill of the classifier.

A Chebyshev functional link artificial neural networks

(CFLNN) has proposed by Patra et al. [106] for non-linear

dynamic system identification. This is obviously another

improvement in this direction and also a source of inspi-

ration to further validate this method in other application

domain. The proposed method is obviously an advance-

ment in this direction. Sing et al. [95] has estimated the

degree of insecurity in a power system by the proposed

IeFLNN with a set of orthonormal trigonometric basis

functions.

In [85], an evolutionary search of genetic type and

multi-objective optimization such as accuracy and com-

plexity of the FLNN in the Pareto sense is used to design a

generalized FLNN (SyFLNN) with internal dynamics and

applied to system identification.

A reduced-decision feedback functional link artificial

neural network (RDF-FLNN) structure for the design of a

nonlinear channel equaliser in digital communication sys-

tems is proposed by Weng et al. [101]. Authors reported

that the use of direct decision feedback can greatly improve

the performance of FLNN structures.

Majhi et al. [91] has applied FLNN for digital water-

marking (DwFLNN), their results shows that FLNN has

better performance than other algorithms in this line. In

Neural Comput & Applic

123

[96], a comparative performance of three artificial neural

networks has given for the detection and classification of

gear faults. Authors reported that ClasFLNN is compara-

tively better than others.

Misra and Dehuri [51] has used a FLANN for classifi-

cation problem in data mining with a hope to get a compact

classifier with less computational complexity and faster

learning. Purwar et al. [104] has proposed a Chebyshev

functional link neural network (SyiFLNN) for system

identification of unknown dynamic non-linear discrete time

systems. Weng et al. [105] has proposed a reduced decision

feed-back Chebyshev functional link artificial neural net-

works (RDF-CFLNN) for channel equalization.

Hu and Tseng [97] in 2007 has used the functional link

net known as BpFLNN for classification of bankruptcy

prediction.

Two simple modified CcFLNNs are proposed by Krish-

naiah et al. [94] for estimation of carrageenan concentration.

In the first model, a hidden layer is introduced and trained by

EBP. In the second model, functional links are introduced to

the neurons in the hidden layer and it is trained by EBP. In

[92], a FLNN with trigonometric polynomial functions (Is-

FLNN) are used in intelligent sensors for harsh environment

that effectively linearizes the response characteristics,

compensates for nonidealities and calibrates automatically.

Dehuri et al. [90] has proposed a novel strategy for feature

selection using genetic algorithm and then used as the input

in FLNN for classification (GFLNN).

Interval regression analysis has been a useful tool for

dealing with uncertain and imprecise data. Since the

available data often contain outliers, robust methods for

interval regression analysis are necessary. Hu [99] has

proposed a genetic-algorithm-based method (IraFLNN) for

determining two functional-link nets for the robust non-

linear interval regression model: one for identifying the

upper bound of data interval, and the other for identifying

the lower bound of data interval. Hu demonstrated that that

IraFLNN performs well for contaminated data sets by

resisting outliers and including all regular data in the data

intervals.

With this comprehensive survey on functional link

artificial neural networks, we can conclude that a very few

applications has so far been made in classification task of

data mining. Although theoretically this area is rich,

application in classification is poor. Therefore, the pro-

posed work can be another improvement in this direction.

Pitfalls and abuses in the functional link neural network

research are harmful to the field. Some of the common

misuses are: (1) mistakes in estimation of misclassification

probabilities; (2) fitting of implausible functions; (3)

incorrectly describing and comparing the complexity of a

network; (4) no information on complexity of the network;

(5) use of inadequate statistical competitors; (6) insufficient

comparison with statistical method; (7) incorrect choice of

basis functions; and (8) naive application to survival data.

Therefore, in order for the field to grow in a healthy

direction and achieve significant advances in the future, it

is important for researchers to be aware of potential pitfalls

and misuses as well as ways to avoid them.

Another reason that many inappropriate uses of

FLANNs are published is the lack of details on several

important aspects of the model-building process.

Researchers often do not give sufficient detail, essential

characteristics, or adequate description of their methodol-

ogy, which hinders the comprehensibility or replications

for others.

Tables 1 and 2 presents a summary of the development

of functional link neural networks thus far and their

applications in various fields.

From Tables 1 and 2, we can observed that BP-learning

scheme is the mostly dominated one. However, it is asso-

ciated with lots of problems, already discussed in Sect. 1.

In order to alleviate some of the problems, this contribution

can act as a suitable guide.

4 Proposed learning scheme for CFLNN

This section is divided into four subsections. In Sect. 4.1,

the orthonormal basis of CFLNN is illustrated. In Sect. 4.2,

we give a in-depth treatment of PSO with adaptive inertia

named as aPSO. In Sect. 4.3, the combined effort of aPSO

and BP-learning for CFLNN is discussed. Finally, we

summarize CFLNN algorithm with a few computational

steps added with a new learning scheme in Sect. 4.4.

4.1 Orthonormal basis of CFLNN

It is well known that the non-linear approximation capacity

of the Chebyshev orthogonal polynomial is very powerful

by the approximation theory [123]. Combining the char-

acteristics of the FLNN [126] and Chebyshev orthogonal

polynomial resulted in the Chebyshev functional link

neural network which we named as CFLNN . The proposed

method utilizes the FLNN input–output pattern, the non-

linear approximation capabilities of Chebyshev orthogonal

polynomial and the adaptive particle swarm optimization

(aPSO)-BP learning scheme for classification.

The Chebyshev FLNN used in this paper is a single-

layer neural network. The architecture consists of two

parts, namely, transformation part, (i.e., from a low-

dimensional feature space to high-dimensional feature

space) and learning part. The transformation deals with the

input feature vector to the hidden layer by approximate

transformable method. The transformation is the functional

expansion (FE) of the input pattern comprising of a finite

Neural Comput & Applic

123

set of Chebyshev polynomial. As a result, the Chebyshev

polynomial basis can be viewed as a new input vector. The

learning part uses the newly proposed aPSO–BP learning.

Recall that, we can approximate a function by a poly-

nomial of truncated power series. The power series

expansion represents the function with a very small error

near the point of expansion, but the error increases rapidly

as we employe it at points farther away. The computational

economy to be gained by Chebyshev series increases when

the power series is slowly convergent. Therefore, Cheby-

shev series are frequently used for approximations to

functions and are much more efficient than other power

series of the same degree. Among orthogonal polynomials,

the Chebyshev polynomials convergence rapidly than

expansion in other set of polynomials [123]. Moreover,

Chebyshev polynomials are easier to compute than trigo-

nometric polynomials. With these interesting properties of

Chebyshev polynomial, we motivated to use CFLNN for

approximation of decision boundaries in the feature space.

The first few Chebyshev polynomials are given by

Ch0(x) = 1, Ch1(x) = x, and Ch2(x) = 2x2 - 1. The

higher order Chebyshev polynomials can be generated with

the recursive formulae given in Table 3.

For example, consider a two-dimensional input pattern

X = [x1, x2]
T. An expanded pattern obtained by using Cheby-

shev functions is given by: u = [1, Ch1(x1), Ch2(x1), …; 1,

Ch1(x2), Ch2(x2), …]T, where Chi(xj) is a Chebyshev polyno-

mial, i the order of the polynomials choosen and j = 1,2.

The following theorem can guide us the cohesiveness

property of CFLNN with feed forward multi-layer per-

ceptron (MLP).

Theorem Assume a feed-forward MLP neural network

with only one hidden layer and activation function of the

output layer are all linear. If all the activation functions of

the hidden layer satisfy the Riemann integrable condition,

then the feed-forward neural network can always be rep-

resented as a Chebyshev neural network. The detailed

proof of the theorem can be obtained in [123].

4.2 Adaptive particle swarm optimization (aPSO)

Adaptive particle swarm optimization (ePSO) is an

improvement over the PSO [110]. PSO [128] is a kind of

stochastic algorithm to search for the best solution by

simulating the movement and flocking of birds. The

algorithm works by initializing a flock of birds randomly

over the searching space, where every bird is called as a

particle. These particles fly with a certain velocity and find

the global best position after some iteration. At each iter-

ation k, the ith particle is represented by a vector xi
k in

multidimensional space to characterize its position. The

velocity vi
k is used to characterize its velocity. Thus PSO

maintains a set of positions:

S ¼ fxk
1; x

k
2; . . .; xk

Ng

and a set of corresponding velocities

V ¼ fvk
1; v

k
2; . . .; vk

Ng:

Initially, the iteration counter k = 0, and the positions xi
0

and their corresponding velocities vi
0(i = 1, 2, …, N), are

generated randomly from the search space X. Each particle

changes its position xi
k, per iteration. The new position xi

k?1

of the ith particle (i = 1, 2, …, N) is biased towards its best

position pi
k with best function value referred to as personal

best or pbest, found by the particle so far, and the very best

position pg
k, referred to as the global best or gbest, found by

its companions. The gbest is the best position in the set

P ¼ fpk
1; p

k
2; . . .; pk

Ng;

where pi
0 = xi

0, Vi.

We can say a particle in S as good or bad depending on

its personal best being a good or bad point in P. Conse-

quently, we call the ith particle (jth particle) in S the worst

(the best) if pi
k(pj

k) is the least (best) fitted, with respect to

function value in P. We denote the pbest of the worst

particle and the best particle in S as ph
k and pg

k, respectively.

Hence pg
k = argmini[1,2,…, Nf(pi

k) and ph
k = argmaxi[1,2,…,

Nf(pi
k).

At each iteration k, the position xi
k of the ith particle is

updated by a velocity vi
k?1 which depends on three com-

ponents: its current velocity vi
k, the cognition term (i.e., the

weighted difference vectors (pi
k - xi

k)) and the social term

(i.e., the weighted difference vector (pg
k - xi

k)).

Specifically, the set S is updated for the next iteration

using

xkþ1
i ¼ xk

i þ vkþ1
i ; ð11Þ

where vi
k?1 = vi

k ? r1 � c1(pi
k - xi

k) ? r2 � c2(pg
k - xi

k).

The parameters r1 and r2 are uniformly distributed

random numbers in [0, 1] and c1 and c2, known as the

cognitive and social parameters, respectively, are popu-

larly chosen to be c1 = c2 = 2.0 [128]. Thus, the values

r1 � c1 and r2 � c2 introduce some stochastic weighting in

the difference vectors (pi
k - xi

k) and (pg
k - xi

k), respec-

tively. The set P is updated as the new positions xi
k?1 are

created using the following rules with a minimization of

the cost function: pi
k?1 = xi

k?1 if f(xi
k?1) \ f(pi

k), otherwise

pi
k?1 = pi

k.

Table 3 Recursive formulae of Chebyshev polynomials

Chebyshev recurrence relation

u1(x) = Ch0(x) = 1

u2(x) = Ch1(x) = x

un(x) = Chn?1(x) = 2xChn(x) - Chn-1(x)

Neural Comput & Applic

123

This process of updating the velocities vi
k, positions xi

k,

pbest pi
k and the gbest pg

k is repeated until a user-defined

stopping condition is met.

We now briefly present a number of improved versions

of PSO and then show where our modified PSO can stand.

Shi and Eberhart [129] has done the first modification by

introducing a constant inertia w, which controls how much

a particle tends to follow its current directions compared to

the memorized pbest pi
k and the gbest pg

k. Hence, the

velocity update is given by

vkþ1
i ¼ w � vk

i þ r1 � c1 � ðpk
i � xk

i Þ þ r2 � c2 � ðpk
g � xk

i Þ; ð12Þ

where the values of r1 and r2 are realized component wise.

Again Shi and Eberhart [130] proposed a linearly

varying inertia weight during the search. the inertia weight

is linearly reduced during the search. This entails a more

globally search during the initial stages and a more locally

search during the final stages. They also proposed a limi-

tation of each particle’s velocity to a specified maximum

velocity vmax. The maximum velocity was calculated as a

fraction s (0 \ s B 1) of the distance between the bounds

of the search space, i.e., vmax = s(xu-xl).

Forie and Groenwold [131] suggested a dynamic inertia

weight and maximum velocity reduction . In this modification,

an inertia weight and maximum velocity are then reduced by

fractions a and b, respectively, if no improvement in pg
k occur

after a pre-specified number of iterations h, i.e.,

if f(pg
k) = f(pg

k-1) then wk?1 = awk and vk
max = bvk

max,

where a and b are such that 0 \ a,b\ 1.

Clerc and Kennedy [132] introduced another interesting

modification to PSO in the form of a constriction coeffi-

cient v, which controls all the three components in velocity

update rule. This has an effect of reducing the velocity as

the search progresses. In this modification, the velocity

update is given by vi
k?1 = v (vi

k ? r1c1(pi
k) ? r2c2(pg

k -

xi
k)), where v ¼ 2

j2�/�
ffiffiffiffiffiffiffiffiffiffiffi
/2�4/
p

j
, / = c1 ? c2 [4.

Da and Ge [118], also modified PSO by introducing a

temperature-like control parameter as in the simulated

annealing algorithm. Zhang et al. [133] has modified the

PSO by introducing a new inertia weight during the

velocity update. Generally in the beginning stages of their

algorithm, the inertial weight w, should be reduce rapidly,

when around optimum the inertial weight w should be

reduced slowly. They adopted the following rule:

w ¼ w0 �
w1

MAXITER1

� �
� k; if 1� k�MAXITER1;

and w ¼ ðw0 � w1Þ � expððMAXITER1� kÞ=vÞ;
if MAXITER1\k�MAXITER;

where w0 is the initial inertia weight, w1 is the inertial

weight of linear section ending, MAXITER are the total

searching generations; MAXITER1 are the used generations

that inertia weight is reduced linearly, k is is a variable

whose range is [1, MAXITER]. By adjusting k, different

ending values of inertial weight are obtained.

In this learning, the inertial weight is adapted as a part of

searching the optimal sets of weights. Compared to [130,

131], in our adaptive PSO, the particle position is adjusted

such that the highly fit particle (best particle) moves slowly

when compared to the less fit particle. This can be achieved

by selecting different w values for each particle according

to their rank, between wu and wl as in the following form:

wi ¼ wl þ Ranki

SWARM SIZEðNÞ

� �

� ðwu � wlÞ: ð13Þ

Therefore, from (13), it can be seen that the best particle

takes the first rank, and the inertia weight for that particle is

set to the minimum value while that for the lowest fitted

particle takes the maximum inertia weight, which makes

that particle move with a high velocity.

In addition, the proposed method also uses the adaptive

cognitive acceleration coefficient (c1) and the social

acceleration coefficients (c2). c1 has been allowed to

decrease from its initial value of c1i to c1f while c2 has been

increased from c2i to c2f using the following equations as in

[134].

ck
1 ¼ ðc1f � c1iÞ

k

MAXITER
þ c1i; ð14Þ

and

ck
2 ¼ ðc2f � c2iÞ

k

MAXITER
þ c2i; ð15Þ

4.3 aPSO–BP learning algorithm

The aPSO -BP is a learning algorithm which combines

the best attributes of aPSO with the best attribute of BP

algorithm. The aPSO algorithm is a global algorithm,

which has a strong ability to find global optimistic result.

This aPSO algorithm, however, has a disadvantage that

the search around global optimum is very slow. The BP

algorithm, on the contrary, has a strong ability to find

local optimistic result, but its ability to find the global

optimistic result is weak. By combining the aPSO with

the BP, a new algorithm referred to as aPSO–BP hybrid

learning algorithm is formulated as a part of this paper.

The fundamental idea for this hybrid algorithm is that at

the beginning stage of searching for the optimum, the

PSO is employed to accelerate the training speed. When

the fitness function value has not changed for some

generations, or value change is smaller than a predefined

number, the searching process is switched to gradient

descending searching according to this heuristic knowl-

edge. Similar to the aPSO algorithm, the aPSO–BP

Neural Comput & Applic

123

algorithm’s searching process is also started from ini-

tializing a group of random particles. First, all the par-

ticles are updated according to the (5), until a new

generation set of particles are generated, and then those

new particles are used to search the global best (gbest)

position in the solution space. Finally, the BP algorithm

is used to search around the global optimum. In this way,

this hybrid algorithm may find an optimum more

quickly. The procedure for this aPSO–BP algorithm can

be summarized by the following computational steps:

1. Initialize the positions and velocities of a group of

particles randomly in the range of [0, 1].

2. Get the input parameters: MAXITER, wl, wu, c1i, c2i,

c1f, and c2f.

3. Evaluate each initialized particle’s fitness value, and

pb is set as the positions of the current particles, while

pg is set as the best position of the initialized

particles.

4. If the maximal iterative generations are arrived, go to

step 11, else, go to step 5.

5. Evaluate the inertia factor according to (13), so that

each particles movement is directly controlled by its

fitness value.

6. Adjust the value of c1 and c2 by using (14) and (15).

7. The positions and velocities of all the particles are

updated according to (11), then a group of new

particles are generated.

8. Evaluate each new particle’s fitness value, and the

worst particle is replaced by the stored best particle.

If the ith particle’s new position is better than pb, pb

is set as the new position of the ith particle. If the best

position of all new particles are better than pg, then pg

is updated.

9. If the current pg is unchanged for 15 consecutive

generations, then go to step 9; else, go to step 4.

10. Use the BP algorithm to search around pg for some

epochs, if the search result is better than pg, output the

current search result; or else, output pg.

11. Output the global optimum pg.

The BP algorithm based on gradient descending has

parameter called learning rate which controls the conver-

gence of the algorithm to an optimal local solution. In

practical applications, users usually employed theoretical,

empirical or heuristic methods to set a good value for this

learning rate. In this paper, we adopted the following

strategy for learning rate:

l ¼ k expð�m� epochÞ; ð16Þ

vwhere l is learning rate, k, m are constants, epoch is a

variable that represents iterative times, through adjusting

k and m, we can control the reducing speed of learning

rate.

4.4 aPSO–BP learning Algorithm for CFLNN

Learning of a CFLNN may be considered as approximating

or interpolating a continuous multivariate function /(X) by

an approximating function /W(X). In CFLNN architecture,

a set of basis functions u, and a fixed number of weight

parameters W are used to represent /W(X). With a specific

choice of a set of basis functions w, the problem is then to

find the weight parameters W that provides the best pos-

sible approximation of u on the set of input–output sam-

ples. This can be achieved by iteratively updating W. The

interested reader about the detailed theory of FLNN can

refer to [51].

Let k training patterns be applied to the FLNN and can

be denoted by hXi, Yii, i = 1(1)k and let the weight matrix

be W. At the ith instant i = 1(1)k, the D-dimensional input

pattern and the CFLNN output are given by Xi = hxi1, xi2,

…, xiDi, i = 1(1)k and bYi ¼ ½byi �; respectively. Its corre-

sponding target pattern is represented by Yi = [yi],

i = 1(1)k. Hence Vi, X = [X1, X2, …, Xk]
T. The augmented

matrix of D-dimensional input pattern and the CFLNN

output are given by:

hX : bY i ¼

x11 x12 : x1D : by1

x21 x22 : x2D : by2

: : : : : :
: : : : : :

xk1 xk2 : xkD : byk

0

B
B
B
B
@

1

C
C
C
C
A

As the dimension of the input pattern is increased from

D to D0 by a set of basis functions u, given by

u(Xi) = [Ch1(xi1), Ch2(xi1),…, Ch1(xi2), Ch2(xi2),…,

Ch1(xiD), Ch2(xiD),…]. The k 9 D0 dimensional weight

matrix is given by W = [W1, W2, …, Wk]
T, where Wi is the

weight vector associated with the ith output and is given by

Wi = [wi1, wi2, wi3, …, wiD0]. The ith output of the CFLNN

is given by byiðtÞ ¼ qðRD0

j¼1wjðxijÞ � wijÞ8i. The error

associated with the ith output is given by eiðtÞ ¼ yiðtÞ �
byiðtÞ . Using the ePSO back-propagation (BP) learning, the

weights of the CFLNN can be optimized. The high-level

algorithms then can be summarized as follows:

1. Input the set of given k training patterns.

2. Choose the set of orthonormal basis functions.

3. For i = 1:k

4. Expand the feature values using the chosen basis

functions.

5. Calculated the weighted sum and then fed to the output

node.

6. error = error ? e(k).

7. End for

8. If the error is tolerable then stop otherwise go to 9.

9. Update the weights using aPSO–BP learning rules and

go to step 3.

Neural Comput & Applic

123

5 Experimental details

This is divided into five subsections. Sect. 5.1 describes the

datasets taken from UCI [119] repository of machine

learning databases. The parameters required for the pro-

posed method are given in Sect. 5.2. The performance of

the CFLNN with aPSO–BP learning using some of the

datasets especially considered by Sierra et al. [84] com-

pared with the model proposed by Sierra et al. in Sect. 5.3.

In Sect. 5.4, the classification accuracy of CFLNN with

aPSO–BP learning is compared with FLNN [51]. In

Sect. 5.5, we compared the performance of CFLNN with

aPSO–BP learning with FLNN proposed in [51] using the

cost matrix analysis and then compared with the results

obtained by StatLog project [135]. Hereafter, we refer

CFLNN with aPSO–BP learning algorithm as HCFLNN.

5.1 Description of the datasets

The availability of results, with previous evolutionary and

constructive algorithms (e.g., Sierra et al. [84], Preshelt

[136]) has guided us in the selection of the following varied

datasets taken from the UCI repository of machine learning

databases for the addressed neural network learning. Let us

briefly discuss the datasets, used for our experimental

setup.

IRIS dataset The dataset consists of d = 4 features made

on each of the 150 iris plants of class c = 3 species. The

three distinct species corresponds to three different classes

such as Iris Setosa, Iris Versicolor and Iris Virginica. The

problem is to classify each test point to its correct species

based on the four measurements.

WINE dataset These data are the results of a chemical

analysis of wines grown in the same region in Italy, but

derived from three different cultivars. The analysis deter-

mined the quantities of 13 constituents found in each of the

three types of wines. The number of instances is 178 and it

is distributed as 59 for class 1, 71 for class 2 and 48 for

class 3. The number of attributes is 13; all are continuous in

nature. There are no missing attributes.

PIMA Indians diabetes dataset This dataset consists of

d = 8 numerical medical attributes and c = 2 classes

(tested positive or negative for diabetes). There are

n = 768 instances. Further, it has dataset related to the

diagnosis of diabetes in an Indian population that lives near

the city of Phoenix, Arizona. All inputs are continuous;

65.1% samples are diabetes negatives.

BUPA liver disorders dataset This is related to the

diagnosis of liver disorders and created by BUPA Medical

Research, Ltd. It consists of 6 numerical attributes, 345

patterns and 2 classes.

Heart disease dataset This is related to diagnoses of

people with heart problems. It has 270 patterns, 6 attributes

and 2 classes.

Cancer dataset In this dataset, the task of classifier is to

classify a tumor as either benign or malignant based on cell

descriptions gathered by microscopic examinations. Input

attributes are for instance the clump thickness, the unifor-

mity of cell size and cell shape, the amount of marginal

adhesion, and the frequency of bare nuclei. It is described

by 9 inputs, 2 classes, and 699 samples. All inputs are

continuous, 34.5% belong to the class of malignant.

5.2 Parameters

All the algorithms have some parameters that have to be

provided by the user. The parameters for the proposed

HCFLNN is listed in Table 4 based on the experimental

results obtained under several independent runs. However,

the parameters for other algorithms are set based on sug-

gestion. Even though no systematic parameter optimization

process has so far been attempted, the suggested one

(producing significantly better than our own setting spe-

cifically in the case of EFLN). The parameters for EFLN

were adopted as suggested in [84]. Similarly, the parame-

ters for FLANN was set as suggested in [51].

The values of the parameters used in this paper are as

follows: we set N = 20d, where d is the dimension of the

problem under consideration. The upper limit (wu) and

lower limit (wl) of the inertia are set to [0.2, 1.8]. Similarly,

the initial and final value of cognitive acceleration coeffi-

cients are set to c1i = 2.5 and c1f = 0.5. The initial and

final value of social acceleration coefficients are set to

c2i = 0.5 and c2f = 2.5. The maximum number of iteration

is fixed to MAXITER = 500.

In the case of BP-learning, the learning parameter l and

the momentum factor m in HCFLNN was chosen after

Table 4 Description of the parameters

Symbol Purpose of the symbol

N Size of the swarm

w Inertia weight

wu Upper limit of the inertia

wl Lower limit of the inertia

c1 Cognitive parameter

c1i Left boundary value of cognitive parameter

c1f Right boundary value of cognitive parameter

c2 Social parameter

c2i Left boundary value of social parameter

c2f Right boundary value of social parameter

MAXITER Maximum iterations for stopping an algorithm

Neural Comput & Applic

123

several runs to obtain the best results. In a similar manner,

the functional expansion of the HCFLNN was carried out.

5.3 HCFLNN versus EFLN

In this subsection we will compare the results of HCFLNN

with the results of EFLN with polynomial basis functions

of degrees 1, 2, and 3. The choice of the polynomial degree

is obviously a key question in FLNN with polynomial basis

functions. However, Sierra et al. [84] has given some

guidance to optimize the polynomial degree that can best

suit the architecture. Considering degrees of the polyno-

mials 1, 2 and 3, the possible number of expanded inputs of

the above datasets are given in Table 5.

For the sake of convenience, we report the results of the

experiments conducted on CANCER and BUPA and then

compared with the methods EFLN [84]. We partitioned

both the datasets into three sets: training, validation and

test sets. Both the networks are trained for 1,500 epochs (it

should be carefully examined) on the training set and the

error on the validation set was measured after every 10

epochs. Training was stopped when a maximum of 1,500

epochs had been trained. The test set performance was then

computed for that state of the network which had minimum

validation set error during the training process. This

method called early stopping is a good way to avoid

overfitting of the network to the particular training exam-

ples used, which would reduce the generalization perfor-

mance. The average error rate corresponding to HCFLNN,

and EFLN w.r.t training, validation and testing of CAN-

CER and BUPA datasets are shown in Table 6.

5.4 HCFLNN versus FLANN

Here, we will discuss the comparative performance of

HCFLNN with FLANN using three datasets IRIS, WINE,

and PIMA. In this case, the total set of samples is randomly

divided into two equal folds. Each of these two folds are

Table 5 Possible number of expanded Inputs of degrees ONE, TWO

and THREE

Dataset Attributes Degree 1 Degree 2 Degree 3

IRIS 4 5 15 35

WINE 13 14 105 560

PIMA 8 9 45 165

BUPA 6 7 28 84

HEART 13 14 105 560

CANCER 9 10 55 220

Table 6 Comparative results of HCFLNN with EFLN for the cancer

and PIMA dataset by considering the average training error (MTre),

average validation error (MVe), and average test error (MTe)

Dataset

HCFLNN

EFLN

MTre MVe MTe MTre MVe MTe

Cancer 1 4.01 2.76 2.57 4.27 1.89 2.09

Cancer 2 3.95 3.97 4.66 4.37 2.96 3.96

cancer 3 4.13 3.51 4.43 3.29 3.01 4.65

BUPA 1 16.26 21.98 22.62 19.07 22.44 23.29

BUPA 2 17.90 24.12 22.35 19.84 18.63 20.37

BUPA 3 15.34 19.92 21.96 16.68 17.81 24.44
Fig. 3 Classification accuracy in test set

Fig. 2 Classification accuracy in training set

Neural Comput & Applic

123

alternatively used either as a training set or as a test set. As

the proposed learning method aPSO–BP learning is a sto-

chastic algorithm, hence, 10 independent runs were per-

formed for every single fold. The training results obtained

in the case of HCFLNN, averaged over 10 runs are illus-

trated in Fig. 2 and compared with the single run of

FLANN. Similarly, Fig. 3 illustrates the performance of

both classifiers in test set.

The plotted results clearly indicate that the performance

of HCFLNN is competitive with FLANN, whereas in other

classification problems like WINE and PIMA the

HCFLNN shows a clear boundary.

The comparative performance of HCFLNN with

FLANN [51] is given in the Tables 7, and 8 w.r.t to the

different confidence level (a) of 95, and 98%, respectively.

In the case of PIMA, the performance of HCFLNN and

FLANN in test data is competitive with each other,

whereas a clear edge is obtained in training set. The clas-

sification accuracy of HCFLNN in the training cases of

IRIS data is better than FLANN, however, in the test cases

the classification accuracy is competitive.

In the case of WINE data the training and testing per-

formance of HCFLNN is superior compared to FLANN.

5.5 Performance of HCFLNN versus FLANN based on

heart data

In this subsection, we will explicitly examine the perfor-

mance of the HCFLNN model by considering the heart

dataset with the use of the ninefold cross-validation

methodology. The reason for using ninefold cross valida-

tion is that to compare the performance with the perfor-

mance of few of the representative algorithms considered

in StatLog Project [135]. In ninefold cross validation, we

partition the database into nine subsets (heart1.dat,

heart2.dat,…, heart9.dat), where eight subsets are used for

training and the remaining one is used for testing. The

process is repeated nine times in such a way that each time

a different subset of data is used for testing. Thus, the

dataset was randomly segmented into nine subsets with 30

elements each. Each subset contains about 56% of samples

from class 1 (without heart disease) and 44% of samples

from class 2 (with heart disease).

The procedure makes use of a weight matrix, which is

described in Table 9.

The purpose of such a matrix is to penalize wrongly

classified samples based on the weight of the penalty of the

class. In general, the weight of the penalty for class 2

samples that are classified as class 1 samples is w1, while

the weight of the penalty for class 1 records that are clas-

sified as class 2 samples is w2. Therefore, the metric used

for measuring the cost of the wrongly classifying patterns

in the training and test dataset is given by (17) and (18).

Ctrain ¼ ðS1 � w1 þ S2 � w2Þ=Strain; ð17Þ
Ctest ¼ ðS1 � w1 þ S2 � w2Þ=Stest; ð18Þ

Table 7 Comparative average performance of HCFLNN and FLNN

[51] based on the confidence level (a = 95%)

Dataset HCFLNN FLANN

IRIS Train 0.9964 ± 0.0136 0.9866 ± 0.0260

Test set 0.9864 ± 0.0262 0.9866 ± 0.0260

WINE Train 0.9842 ± 0.0259 0.9605 ± 0.0405

Test set 0.9708 ± 0.0350 0.9550 ± 0.0431

PIMA Train 0.8064 ± 0.0395 0.7877 ± 0.0409

Test set 0.7928 ± 0.0405 0.7812 ± 0.0414

Table 8 Comparative average performance of HCFLNN and

FLANN [51] based on the confidence level (a = 98%)

Dataset HCFLNN FLANN

IRIS Train 0.9964 ± 0.0161 0.9866 ± 0.0309

Test set 0.9864 ± 0.0312 0.9866 ± 0.0309

WINE Train 0.9842 ± 0.0308 0.9605 ± 0.0481

Test set 0.9708 ± 0.0416 0.9550 ± 0.0512

PIMA Train 0.8064 ± 0.0470 0.7877 ± 0.0486

Test set 0.7928 ± 0.0482 0.7812 ± 0.0492

Table 9 Weight matrix of classes to penalize

Real classification Model classification

Class 1 Class 2

Class 1 0 w2

Class 2 w1 0

Table 10 Heart disease classification performance of FLANN

models

Data subset Error in training set Error in test set Ctrain Ctest

Class 1 Class 2 Class 1 Class 2

heart1 13/133 14/107 1/17 1/13 0.35 0.2

heart2 14/133 12/107 2/17 1/13 0.31 0.23

heart3 13/134 15/106 4/16 2/14 0.37 0.47

heart4 13/133 10/107 1/17 4/13 0.26 0.7

heart5 13/133 16/107 3/17 2/13 0.39 0.43

heart6 13/134 14/106 6/16 0/14 0.35 0.2

heart7 15/133 13/107 0/17 3/13 0.33 0.5

heart8 18/133 17/107 1/17 0/13 0.43 0.03

heart9 20/134 9/106 2/16 1/14 0.27 0.23

Mean 0.34 0.33

Neural Comput & Applic

123

where Ctrain is the cost of the training set; Ctest is the cost of

test set; S1 and S2 denote the patterns that are wrongly

classified as belongs to class 1 and 2, respectively; Strain

and Stest are the total number of training and test patterns,

respectively.

Table 10 presents the errors and costs of the training and

test sets for the FLANN model with a weight value of

w1 = 5 and w2 = 1.

Table 11 illustrates the performance of HCFLNN based

on the above definition of cost matrix. The errors in

training and test set are explicitly given.

The classification results found by the HCFLNN for the

heart disease dataset were compared with the results found

in the StatLog project [135]. According to [135], compar-

ison consists of calculating the average cost produced by

the nine data subsets used for validation. Table 12 presents

the average cost for the nine training and test subsets. The

result of the HCFLNN is highlighted in bold.

6 Conclusions and research directions

Functional link neural networks is very young, but active

and rapidly expanding field of research. In other words, it is

an active branch of higher order neural networks (HONs)

and is widely used in many applications such as control,

channel equalization, bankruptcy prediction, electric load

forecasting, data mining, and so on. The promise of FLNN

is to provide a very simple and compact architecture

(possible no hidden layers) for approximation of highly

non-linear boundary.

In this survey, we have discussed the prospective models

of FLNN with their associated basis functions and learning

scheme followed by a clear road map of the development of

FLNNs over the years by several researchers. In addition, we

developed a new learning scheme for Chebyshev functional

link neural network (CFLNN). The model is constructed

using the newly proposed aPSO-back propagation learning

algorithm and functional link artificial neural network with

the orthogonal Chebyshev polynomials. The model was

designed for the task of classification in data mining. The

method was experimentally tested on various benchmark

datasets obtained from publicly available UCI repository.

The performance of the proposed method demonstrated that

the classification task is quite well in WINE and PIMA,

whereas showing a competitive performance with FLNN in

the case of IRIS data. Further, we compared this model with

EFLN and FLNN, respectively. The comparative results of

the developed model is shows a clear edge over FLNN.

Compared with EFLN, the proposed method has been shown

to yield state-of-the-art recognition error rate for the classi-

fication problems such as CANCER and BUPA.

With this encouraging results of HCFLNN our future

research includes: (1) testing the proposed method on more

number of real life bench mark classification problems with

highly non-linear boundaries; (2) mapping the input

Table 11 Heart disease classification performance of HCFLNN

models

Data subset Error in training set Error in test set Ctrain Ctest

Class 1 Class 2 Class 1 Class 2

heart1 13/133 14/107 1/17 1/13 0.35 0.2

heart2 13/133 12/107 1/17 2/13 0.30 0.36

heart3 12/134 13/106 5/16 1/14 0.32 0.33

heart4 13/133 10/107 4/17 1/13 0.26 0.30

heart5 13/133 15/107 3/17 2/13 0.37 0.43

heart6 13/134 12/106 5/16 1/14 0.30 0.30

heart7 14/133 13/107 1/17 2/13 0.33 0.37

heart8 16/133 16/107 0/17 2/13 0.40 0.33

heart9 18/134 10/106 2/16 1/14 0.28 0.23

Mean 0.32 0.31

Table 12 Comparative classification performance of HCFLNN,

FLANN with the algorithms considered in [135] using the heart

disease bench mark datset

Methods Ctest Ctrain

HCFLNN 0.31 0.32

FLANN 0.33 0.34

HNFB-1 0.37 0.59

Bayes 0.37 0.35

Dicrim 0.39 0.31

LogDisc 0.39 0.27

Alloc80 0.41 0.39

QuaDisc 0.42 0.27

Castle 0.44 0.37

Cal5 0.44 0.33

CART 0.45 0.44

CASCADE 0.47 0.21

Knn 0.478 0

Smart 0.48 0.26

Dipole92 0.51 0.43

Itrule 0.51 –

BayTree 0.53 0.11

LVQ 0.60 0.14

IndCart 0.63 0.26

Kohonen 0.69 0.43

Ac2 0.74 0

Cn2 0.77 0.21

C4.5 0.78 0.44

Neural Comput & Applic

123

features with other polynomials such as Legendre, Gauss-

ian, Sigmoid, power series, etc. for better approximation of

the decision boundaries; (3) the stability and convergence

analysis of the proposed method; and (4) the evolution of

optimal FLNN using particle swarm optimization. Of

course simple methods perform well and often better than

more complex approaches but innovative combinations of

FLNN with PSO are still promising.

The HCFLNN architecture, because of its simple

architecture and computational efficiency may be conve-

niently employed in other tasks of data mining and

knowledge discovery in databases [137, 138] such as

clustering, feature selection, feature extraction, association

rule mining, regression, and so on. However, a necessary

property of algorithms which are capable of handling large

and growing datasets is their scalability or linear com-

plexity with respect to the data size. Scalability in the data

mining literature means a time (and space) complexity

which is proportional to the size of the data set, i.e., O(n) if

n is the number of records of a data set. The proportionality

constant may actually grow slightly as well and complex-

ities like O(n log(n)) are usually also acceptable. Moreover,

the variables, or attributes, are mainly assumed to be either

continuous or categorical but more general data types are

frequently analysed in data mining.

The extra calculation generated by the higher order units

can be eliminated, provided that these polynomial terms

are stored in memory instead of being recalculated each

time the HCFLNN trained.

Acknowledgments Authors would like to thank BK21 research

program on Next Generation Mobile Software at Yonsei University,

South Korea for their financial support. The authors greatly appreciate

all the reviewers’ constructive comments that motivated them to think

more and improve the presentation of this paper.

References

1. Haykin S (1999) Neural networks—a comprehensive founda-

tion. Prentice Hall, Englewood Cliffs

2. Zhang GP (207) Avoiding pitfalls in neural network research.

IEEE Trans Syst Man Cybern Part C Appl Rev 37(1):3–16

3. Anders U, Korn O (1999) Model selection in neural networks.

Neural Netw 12:309–323

4. Benitez JM, Castro JL, Requena I (1997) Are artificial neural

networks black boxes? IEEE Trans Neural Netw 8(5):1156–1164

5. Cheng B, Titterington D (1994) Neural networks: a review from

a statistical perspective. Stat Sci 9(1):2–54

6. McCulloch W, Pitts W (1943) A logical calculus of the ideas

immanent in nervous activity. Bull Math Biophys 7:115–133

7. Giles CL, Maxwell T (1987) Learning invariance, and gener-

alization in a higher order neural networks. Appl Opt

26(23):4972–4978

8. Belli MR, Conti M, Crippa P, Turchetti C (1999) Artificial

neural networks as approximators of stochastic processes.

Neural Netw 12(4–5):647–658

9. Castro JL, Mantas CJ, Benitez JM (2000) Neural networks with

a continuous squashing function in the output are universal

approximators. Neural Netw 13(6):561–563

10. Funahashi K (1989) On the approximate realization of contin-

uous mappings by neural networks. Neural Netw 2:183–192

11. Andrews R, Diederich J, Tickle AB (1995) Survey and critique

of techniques for extracting rules from trained artificial neural

networks. Knowl Based Syst 8(6):373–389

12. Castro JL, Requena I, Benitez JM (2002) Interpretation of

artificial neural networks by means of fuzzy rules. IEEE Trans

Neural Netw 13(1):101–116

13. Setiono R, Leow WK, Zurada J (2002) Extraction of rules from

artificial neural networks for nonlinear regression. IEEE Trans

Neural Network 13(3):564–577

14. Setiono R, Thong JYL (2004) An approach to generate rules

from neural networks for regression problems. Eur J Oper Res

155:239–250

15. Gish H (1990) A probabilistic approach to the understanding and

training of neural network classifiers. In: Proc IEEE interna-

tional conference acoustic, speech signal process 3:1361–1364

16. Zhang GP (2000) Neural networks for classification: a survey.

IEEE Trans Syst Man Cybern C 30(4):451–462

17. Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learn-

ing, neural and statistical classification. Ellis Horwood, New

York

18. Adya M, Collopy F (1998) How effective are neural networks at

forecasting and prediction? A review and evaluation. J Forecast

17:481–495

19. Callen JL, Kwan CCY, Yip PCY, Yuan Y (1996) Neural net-

work forecasting of quarterly accounting earnings. Int J Forecast

12:475–482

20. Church KB, Curram SP (1996) Forecasting comsumers’

expenditure: a comparison between econometric and neural

network models. Int J Forecast 12:255–267

21. Connor JT, Martin RD, Atlas LE (1994) Recurrent neural net-

works and robust time series prediction. IEEE Trans Neural

Netw 51(2):240–254

22. Cottrell M, Girard B, Girard Y, Mangeas M, Muller C (1995)

Neural modeling for time series: a statistical stepwise method for

weight elimination. IEEE Trans Neural Netw 6(6):1355–1364

23. Faraway JJ, Chatfield C (1998) Time series forecasting with

neural networks: a comparative study using the airline data.

Appl Stat 47:231–250

24. Fletcher D, Goss E (1993) Forecasting with neural networks—

an application using bankruptcy data. Inf Manag 24:159–167

25. Gorr WL (1994) Research prospective on neural network fore-

casting. Int J Forecast 10:1–4

26. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for

short-term forecasting: a review and evaluation. IEEE Trans

Power Syst 16(1):44–55

27. Hu MY, Zhang GP, Jiang CX, Patuwo BE (1999) A cross-

validation analysis of neural network out-of-sample perfor-

mance in exchange rate forecasting. Decis Sci 30:197–216

28. Kaastra I, Boyd M (1996) Designing a neural network for

forecasting financial and economic time series. Neurocomputing

10:215–236

29. Maier HR, Dandy GC (2000) Neural networks for the prediction

and forecasting of water resources variables: a review of mod-

eling issues and applications. Environ Model Softw 15:101–124

30. Park YR, Murray TJ, Chen C (1996) Predicting sun spots using a

layered perceptron neural network. IEEE Trans Neural Netw

7(2):501–505

31. Qi M, Zhang GP (2001) An investigation of model selection

criteria for neural network time series forecasting. Eur J Oper

Res 132:666–680

Neural Comput & Applic

123

32. Kracha KA, Wagner U (1999) Applications of artificial neural

networks in management science: a survey. J Retail Consum

Serv 6:185–203

33. Wong BK, Bodnovich TA, Selvi Y (1997) Neural network

applications in business: a review and analysis of the literature

(1988–1995). Decis Support Syst 19:301–320

34. Flood I, Kartam N (1994) Neural network in civil engineering-I:

principles and understanding. J Comput Civil Eng 8(2):131–148

35. Lu CN, Wu HT, Vemuri S (1993) Neural network based short

term load forecasting. IEEE Trans Power Syst 8(1):336–342

36. Lisboa PJG (2002) A review of evidence of health benefit from

artificial neural networks in medical intervention. Neural Netw

15:11–39

37. Protney LG, Watkins MP (2000) Foundations of clinical

research: applications to practice. Prentice-Hall, Princeton

38. Hosseini-Nezhad SM, Yamashita TS, Bielefeld RA, Krug SE, Pao

YH (1995) A neural network approach for the determination of

interhospital transport mode. Comput Biomed Res 28(4):319–334

39. Tawfik H, Liatsis P (1997) Prediction of non-linear time series

using higher order neural networks. In: Proceeding IWSSIP1997

conference, Poznan, Poland

40. Kaita T, Tomita S, Yamanaka J (2002) On a higher order neural

network for distortion invariant pattern recognition. Pattern

Recognit Lett 23:977–984

41. Ghosh J, Shin Y (1992) Efficient higher-order neural networks

for classification and function approximation. Int J Neural Syst

3:323–350

42. Minsky M, Papert S (1969) Perceptrons. The MIT Press

43. Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE

WESCON Convention Record, pp 96–104

44. Widrow B, Lehr M (1990) 30 years of adaptive neural networks:

perceptron, madaline, and back-propagation. Proc IEEE

78(9):1415–1442

45. Cover TM (1965) Geometrical and statistical properites of

systems of linear inequalities with applications in pattern rec-

ognition. IEEE Trans Electron Comput 14:326–334

46. Hornik K et al (1989) Multi-layer feed-forward networks are

universal approximators. Neural Netw 2:359–366

47. Giles CL, Maxwell T (1987) Learning, invariance and gener-

alization in higher-order neural networks. Appl Opt

26(23):4972-4978

48. Pao YH (1989) Adaptive pattern recognition and neural net-

work. Addison-Wesley, Reading, MA

49. Venkatesh SS, Baldi P (1991) Programmed interactions in

higher order neural networks: maximal capacity. J Complex

7:316–337

50. Antyomov E, Pecht OY (2005) Modified higher order neural

network for invariant pattern recognition. Pattern Recognit Lett

26:843–851

51. Misra BB, Dehuri S (2007) Functional link neural network for

classification task in data mining. J Comput Sci 3(12):948–955

52. Mirea L, Marcu T (2002) System identification using functional

link neural networks with dynamic structure. 15th Triennial

World Congress, Barcelona, Spain

53. Cass R, Radl B (1996) Adaptive process optimization using

functional link networks and evolutionary algorithms. Control

Eng Pract 4(11):1579–1584

54. Pao Y-H, Philips SM (1995) The functional link net learning

optimal control. Neurocomputing 9:149–164

55. Shin Y, Ghosh J (1995) Ridge polynomial networks. IEEE Trans

Neural Netw 6(2):610–622

56. Shin Y, Ghosh J (1992) Approximation of multivariate functions

using ridge polynomial networks. In: Proceedings of interna-

tional joint conference on neural networks II, pp 380–385

57. Voutriaridis C, Boutalis YS, Mertzios G (2003) Ridge polyno-

mial networks in pattern recognition. 4th EURASIP conference

focused on video/image processing and multimedia communi-

cations, Croatia, pp 519–524

58. Shin Y, Ghosh J (1991) The pi-sigma networks: an efficient

higher order neural network for pattern classification and func-

tion approximation. In: Proceedings of international joint con-

ference on neural networks I, pp 13–18

59. Shin Y, Ghosh J (1992) Computationally efficient invariant

pattern recognition with higher order pi-sigma networks. The

University of Texas at Austin, Tech. Report

60. Shin Y, Ghosh J (1991) Realization of boolean functions using

binary pi-sigma networks. In: Proceedings of conference on

artificial neural networks in engineering, St. Louis

61. Hussain AJ, Liatsis P (2002) Recurrent pi-sigma networks for

DPCM image coding. Neurocomputing 55:363–382

62. Xiong Y et al (2007) Training pi-sigma network by on-line

gradient algorithm with penalty for small weight update. Neural

Comput 19:3356–3368

63. Iyoda EM et al (2007) Image compression and reconstruction

using pit-sigma neural networks. Soft Comput 11:53–61

64. Hussain AJ et al (2008) Physical time series prediction using

recurrent pi-sigma neural networks. Int J Artif Intell Soft

Comput 1(1):130–145

65. Nie Y, Deng W (2008) A hybrid genetic learning algorithm for

pi-sigma neural network and the analysis of its convergence. In:

Proceedings of fourth international conference on natural com-

putation, IEEE Press, pp 19–23

66. Zhu Q, Cai Y, Liu L (1999) A global learning algorithm for a

RBF network. Neural Netw 12:527–540

67. Li M, Tian J, Chen F (2008) Imrpoving multiclass pattern rec-

ognition with a co-evolutionary RBFNN. Pattern Recognit Lett

29:392–406

68. Dybowski R (1998) Classification of incomplete feature vectors

by radial basis function networks. Pattern Recognit Lett

19:1257–1264

69. Leonardis A, Bischof H (1998) An efficient MDL based con-

struction of RBF networks. Neural Netw 11:963–973

70. Chen S, Wu Y, Luk BL (1999) Combined genetic algorithm

optimization and regularized orthogonal least square learning

for radial basis function networks. IEEE Tran Neural Netw

10(5):1239–1243

71. Lee YC, Doolen G, Chen HH, Sun GZ, Maxwell T, Lee HY,

Giles CL (1986) Machine learning using a higher order corre-

lation network. Physica 22D:276–306

72. Peretto P, Niez JJ (1986) Long-term memory storage capacity of

multiconnected neural networks. Biol Cybern 54:5363

73. Psaltis D, Park CH (1986) Nonlinear discriminant functions and

associative memories. In: Denker JS (ed) Neural networks for

computing. Amererican Institute of Physics, New York, pp 370–

375

74. Gardner E (1987) Multiconnected neural-network models.

J Phys A Math Gen 20:3453–3464

75. Abbott LF, Arian Y (1987) Storage capacity of generalized

networks. Phys Rev A 36:5091–5094

76. Kamp Y, Hasler M (1990) Recursive neural networks for

associative memory. Wiley, New York

77. Horn D, Usher M (1988) Capacities of multiconnected memory

models. J Phys France 49:389–395

78. Guillermo V (1998) A distributed approach to neural network

simulation program. Master thesis, The University of Texas at

E1 Paso, TX

79. Zurada JM (1992) Introduction to artificial neural system. West

Publishing Company, St. Paul, MN

80. Beale R, Jackson T (1991) Neural computing: an introduction.

Hilger, Philadelphia, PA

81. Haring B, Kok JN (1995) Finding functional links for neural

networks by evolutionary computation. In: Van de Merckt T

Neural Comput & Applic

123

et al (eds) BENELEARN1995, proceedings of the fifth Belgian–

Dutch conference on machine learning, Brussels, Belgium,

pp 71–78

82. Panagiotopoulos DA et al (1999) Planning with a functional

neural network architecture. IEEE Trans Neural Netw

10(1):115–127

83. Patra JC et al (1999) Identification of non -linear dynamic

systems using functional link artificial neural networks. IEEE

IEEE Trans Syst Man Cyber Part B Cybern 29(2):254–262

84. Sierra A, Macias JA, Corbacho F (2001) Evolution of Functional

Link Networks. IEEE Tranas Evol Comput 5(1):54–65

85. Marcu T, Koppen-Seliger B (2004) Dynamic functional link

neural networks genetically evolved applied to system identifi-

cation. In: Proceedings of ESANN’2004, Bruges (Belgium),

pp 115–120

86. Patra JC, Pal NR (1995) A functional link neural network for

adaptive channel equalization. Signal Process 43:181–195

87. Zhao H, Zhang J (2008) Functional link neural network cas-

caded with Chebyshev orthogonal polynomial for non-linear

channel equalization. signal Process 88:1946–1957

88. Haring et al (1997) Feature selection for neural networks

through functional links found by evolutionary computation. In:

Liu X et al (eds) Adavnces in intelligent data analysis (IDA-97).

LNCS 1280:199–210

89. Patra JC et al (2000) Modelling of an intelligent pressure sensor

using functional link artificial neural networks. ISA Trans

39:15–27

90. Dehuri S et al (2008) Genetic feature selection for optimal

functional link neural network in classification. In: Fyfe C et al

(eds) IDEAL 2008, LNCS 5326:156–163

91. Majhi B et al (2005) An improved scheme for digital water-

marking using functional link artificial neural network. J Com-

put Sci 1(2):169–174

92. Patra JC et al (2008) Functional link neural networks-based

intelligent sensors for Harsh Environments. Sens Transducers J

90:209–220

93. Dash PK et al (1999) A functional link neural network for short

term electric load forecasting. J Intell Fuzzy Syst 7:209–221

94. Krishnaiah D et al (2008) Application of ultrasonic waves

coupled with functional link neural network for estimation of

carrageenan concentration. Int J Phys Sci 3(4):90–96

95. Sing SN, Srivastava KN (2002) Degree of insecurity estimation

in a power system using functional link neural network. ETEP

12(5):353–359

96. Abu-Mahfouz I-A (2005) A comparative study of three artificial

neural networks for the detection and classification of gear

faults. Int J Gen Syst 34(3):261–277

97. Hu Y-C, Tseng F-M (2007) Functional-link net with fuzzy

integral for bankruptcy prediction. Neurocomputing 70:2959–

2968

98. Park GH, Pao YH (2000) Unconstrained word-based approach

for off-line script recognition using density based random vector

functional link net. Neurocomputing 31:45–65

99. Hu Y-C (2008) Functional link nets with genetic algorithm

based learning for robust non-linear interval regression analysis.

Neurocomputing. doi:10.1016/J.neucom.2008.07.002

100. Chen CLP et al (1998) An incremental adaptive implementation

of functional link processing for function approximation, time

series prediction, and system identification. Neurocomputing

18:11–31

101. Weng W-D, Yen CT (2004) Reduced decision feed-back

FLANN non-linear channel equaliser for digital communication

systems. IEE Proc Commun 151(4):305–311

102. Hussain A et al (1997) A new adaptive functional link neural

network based DFE for overcoming co-channel interference.

IEEE IEEE Trans Commun 45(11):1358–1362

103. Patra JC et al (1999) Non-linear channel equalization for QAM

signal constellation using artificial neural networks. IEEE

Tranasactions on Systems, Man, Cybernetics-Part B: Cybernet-

ics 29(2):262–271

104. Purwar S et al (2007) On-line system identification of complex

systems using Chebyshev neural networks. Appl Soft Comput

7:364–372

105. Weng W-D et al (2007) A channel equalizer usi ng reduced

decision feedback Chebyshev function link artificial neural

networks. Inf Sci 177:2642–2654

106. Patra JC et al (2002) Non-linear dynamic system identification

using Chebyshev functional link artificial neural networks. IEEE

Trans Syst Man Cybern Part B Cybern 32(4):505–511

107. Fogel DB (2000) Evolutionary computation: towards a new

philosophy of machine intelligence. IEEE Press, New York

108. Pearson DW et al (eds) (1995) Artificial neural networks and

genetic algorithms. Springer Verlag

109. Suzuki J (1995) A Markov chain analysis on simple genetic

algorithms. IEEE Trans Syst Man Cybern 25(4):6–659

110. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:

Proceedings of the IEEE international conference on neural

networks. Pisacataway, NJ, pp 1942–9148

111. Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of

genetic algorithms and neural networks: a survey of the state of

the art. In: Proceedings of international workshop on combina-

tions of genetic algorithms and neural networks pp 1–37

112. Davidor Y (1990) Epistasis variance: suitability of a represen-

tation to genetic algorithms. Complex Syst 4:368–383

113. Eshelman LJ, Schaffer JD (1993) Real coded genetic algorithms

and interval schemata. In: Whitley LD (ed) Foundation of

genetic algorithms. Morgan Kaufmann, San Mateo, pp 187–202

114. Muhlenbein H, Schlierkamp-Voosen D (1993) Predictive mod-

els for the breeder genetic algorithm I. Continuous parameters

optimization. Evol Comput 1(1):24–49

115. Schutte JF, Groenwold AA (2005) A study of global optimiza-

tion using particle swarms. J Glob Optim 31(1):93–108

116. Ali MM, Kaelo P (2008) Improved particle swarm algorithms

for global optimization. Appl Math Comput 196:578–593

117. Yu J, Wang S, Xi L (2008) Evolving artificial neural networks

using an improved PSO and DPSO. Neurocomputing 71:1054–

1060

118. Da Y, Ge XR (2005) An improved PSO-based ANN with sim-

ulated annealing technique. Neurocomput Lett 63:527–533

119. Blake CL, Merz CJ (1998) UCI repository of machine learning

databases. http://www.ics.uci.edu/mlearn/MLRepository.html

120. Pao Y-H, Phillips SM, Sobajic DJ (1992) Neural-net computing

and intelligent control systems. Int J Control 56(2):263–289

121. Hornik K (1991) Approximation capabilities of multilayer feed-

forward networks. Neural Netw 4:251–257

122. Smith KA, Gupta JND (2002) Neural networks in business:

techniques and applications. Idea Group, Hershey, PA

123. Lee TT, Jeng JT (1998) The Chebyshev polynomial based

unified model neural networks for function approximations.

IEEE Trans Syst Man Cybern Part B 28:925–935

124. Namatame A, Veda N (1992) Pattern classification with

Chebyshev neural network. Int J Neural Netw 3:23–31

125. Klasser MS, Pao YH (1988) Characteristics of the functional link

net: a higher order delta rule net. IEEE proceedings of 2nd annual

international conference on neural networks, San Diago, CA

126. Pao YH, Takefuji Y (1992) Functional link net computing:

theory, system, architecture and functionalities. IEEE Comput,

pp 76–79

127. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Morgan Kaufmann, San Mateo

128. Kennedy J, Eberhart RC (1999) The particle swarm: social

adaptation in information processing systems. In: Corne D,

Neural Comput & Applic

123

http://dx.doi.org/10.1016/J.neucom.2008.07.002
http://www.ics.uci.edu/mlearn/MLRepository.html

Dorigo M, Glover F (eds) New ideas in optimization. McGraw–

Hill, Cambridge, UK, pp 379–387

129. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer.

In: Proceedings of the IEEE international conference on evo-

lutionary computation. IEEE Press, Pisacataway, NJ, pp 69–73

130. Shi Y, Eberhart RC (1998) Parameter selection in particle

swarm optimization. Evolutionary Programming VII, LNCS,

Springer, Berlin 1447:591–600

131. Forie PC, Groenwold AA (2002) The particle swarm optimi-

zation algorithm in size and shape optimization. Struct Multi-

discipl Optim 23(4):259–267

132. Clerc M, Kennedy J (2002) The particle swarm explosion, sta-

bility and convergence in a multidimensional complex space.

IEEE Trans Evol Comput 6(1):58–73

133. Zhang JR et al (2007) A hybrid particle swarm optimization-

back-propagation algorithm for feed-forward neural network

training. Appl Math Comput 185:1026–1037

134. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-orga-

nizing hierarchical particle swarm optimizer with time varying

acceleration coefficients. IEEE Trans Evol Comput 8(3):240–

255

135. Lippmann R (1987) An introduction to computing with neural

networks. IEEE ASSP Mag 4:4–22

136. Preshelt L (1994) Proben1-a set of neural network benchmark

problems and benchmarking rules. Technical Report 21/94,

Universitat Karlsruhe, Germany

137. Ghosh A, Dehuri S, Ghosh S (2008) Multi-objective evolu-

tionary algorithms for knowledge discovery from databases.

Springer

138. Kriegel H-P et al (2007) Future trends in data mining. Data

Mining Knowl Discov 15(1):87–97

139. Vellido A, Lisboa PJG, Vaughan J (1999) Neural networks in

business: a survey of applications (1992–1998). Expert Syst

Appl 17:51–70

140. Liatsis P, Hussain AJ (1999) Non-linear one dimensional DPCM

image prediction using polynomial neural network. In: Pro-

ceedings of SPIE applications of artificial neural networks in

image processing IV, San Jose, CA 3647:58–68

Neural Comput & Applic

123

	A comprehensive survey on functional link neural networks �and an adaptive PSO-BP learning for CFLNN
	Abstract
	Introduction
	Architectures and learning of FLNN
	Random variable functional link neural networks (RVFLN)
	Functional link neural networks with generic basis
	Functional link neural networks with trigonometric basis
	Functional link neural networks with Chebyshev polynomial

	Functional link neural networks: a road map
	Proposed learning scheme for CFLNN
	Orthonormal basis of CFLNN
	Adaptive particle swarm optimization (aPSO)
	aPSO-BP learning algorithm
	aPSO-BP learning Algorithm for CFLNN

	Experimental details
	Description of the datasets
	Parameters
	HCFLNN versus EFLN
	HCFLNN versus FLANN
	Performance of HCFLNN versus FLANN based on heart data

	Conclusions and research directions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

