
Artif Life Robotics (2001) 5:142-147 �9 ISAROB 2001

S u n g - B a e Cho

Applications of artificial life to developing robot and softbot

Received: November 21, 2000 / Accepted: May 30, 2002

Abstract Adaptation gives rise to a kind of complexity
that greatly hinders our attempts to solve some of the
most important problems currently posed by our world.
Recently, there has been an attempt to build a complex
adaptive system which is rich in autonomy and creativity,
with the ideas and methodologies of artificial life (A-fife).
This article presents the concepts and methodologies of A-
life, and shows two typical applications based on them.
These systems not only develop new functionality sponta-
neously, but also grow and evolve their own structure
autonomously. They have been applied to controlling a mo-
bile robot and developing adaptive agents on the world-
wide web.

K e y words Artif ic ial l ife - Complex adaptive systems -
Robot- Softbot

1 Introduction

Intelligent systems can adaptively estimate continuous
functions from data without specifying mathematically how
outputs depend on inputs. System behavior is called intelli-
gent if the system emits appropriate problem-solving re-
sponses when faced with problem stimuli. Recently, some
researchers have tried to synthesize inte l l igent systems by
using artificial life (A-life) technologies.

A-life research aims at studying man-made systems
which exhibit behaviors characteristic of natural living sys-
tems. It complements traditional biological sciences which
are concerned with the analysis of living organisms by at-
tempting to synthesize life-like behavior within computers;

S.-B. Cho (U~)
Department of Computer Science, Yonsei University, 134 Shinchon-
dong, Sudaemoon-ku, Seoul 120-749, Korea
Fax +82-2-365-2579
e-mail: sbcho@cs,yonsei.ac.kr

This work was presented in part at the Fifth International Symposium
on Artificial Life and Robotics, Oita, Japan, January 26-28, 2000

extending the empirical foundation upon which biology is
based from life as we k n o w it to a larger picture of life as it
could be] The essential features of A-life models are as
follows:

- they work with populations of simple programs, where no
single program directs all the other programs;

- each program details the way in which a simple entity
reacts to local situations in its environment, including
encounters with other entities;

- t h e r e are no rules in the system that dictate global
behavior, and higher behavior is therefore emergent.

It is the concept of emergent properties that shows
the nature of A-life research. Emergent properties are
exhibited by a collection of interacting entities whose global
behavior cannot be reduced to a simple aggregate of the
individual contributions of these entities. In artificial intelli-
gence, conventional methods cannot reveal or explain the
emergent properties because they are generally reduction-
ist, i.e., they decompose a system into its constituent sub-
systems and then study these in isolation using a top-down
approach.

However, A-life adopts a bottom-up approach, which
starts with a collection of entities exhibiting simple and
well-understood behavior patterns, and synthesizes these
into more complex systems. Many technologies are used in
A-life research, such as cellular automata, the Lindenmayer
system, the genet ic algorithm, neural networks, and so on,
but the key idea is the evolutionary algorithm. In this sense,
a practical goal of A-life can be redefined as finding a
mechanism for an evolutionary process to be used in the
automatic design and creation of artifacts. Figure 1 shows
the main research areas in artificial life.

The genetic algorithm, one of the evolutionary algo-
rithms, is a model of machine learning derived from the
procedure of evolution in nature. This is done by creating a
population of individuals that are represented by chromo-
somes. A chromosome can be thought of as a string of
human genes. The individuals in the population go through
evolution. This is an evolutionary procedure in which differ-
ent individuals compete for resources in the environment.

143

Artificial Ecology

" ~ L A u t 0 n o m o u s Intellio enca..~._....-- --'~

Organizational
Model

- Neural
Networks

- Immune
System

- Hormone
System

Genetic Algorithm
(Parallel Distributed Learning)

Developmental Algorithm

Chaos and Fractal
(Microscopic Self-organization)

Emergence of Life-likeBehaviors [

Developmental. EnzymeM~ 1

- Gene
- Self-

organization

Fig. 1. T h e m a i n r e sea rch areas in artificial life

of four states: neuron, axon, dendrite, and blank. If the state
of the cell is blank, it is an empty space. Blank cells do not
participate in any cell interactions during the signaling of
neural networks. Neuron cells collect neural signals f rom the
surrounding dendrite cells. If the sum of the collected signals
is greater than the threshold, then the neuron cells send the
signals to the surrounding axon cells. These cells distribute
signals originating from neuron cells. Dendrite cells collect
signals and eventually pass them to neuron cells. 4

Neighborhood cells are the surrounding cells (north,
south, west, and east) in 2-D C A space (top and bot tom are
added in 3-D C A space). The state of each cell, and the
program or rule deciding the state of each cell with the
states of its neighbors, are decided by the chromosomes.
One chromosome has the same number segments as cells,
and can make one neural network. One segment corre-
sponds to one cell, and can change a blank cell to a neuron
cell. It also decides the directions in which to send received
signals to neighborhood cells.

Better individuals are more likely to survive and propagate
their genetic material to their offspring. 2.1.2 Growth phase

2 Application to a mobile robot

There have been several attempts to develop an artificial
brain using engineering techniques. Among these, CAM-
brain develops neural networks based on cellular automata
by evolution. Owing to their particular features, cellular
automata (CA) can be evolved very quickly on parallel
hardware such as CAM-8 at MIT, or CBM at ATR. 2

Evolutionary engineering (EE) is an approach used to
evolve neural network modules with particular functions in
order to develop an artificial brain. It has been extensively
exploited to apply each neural network module to a specific
problem. We have attempted to evolve a module of CAM-
brain for the problem of robot control, especially the
Khepera simulator. A simulation means that an appropriate
neural architecture emerges to make the Khepera simulator
navigate the given environment without bumping against
walls and obstacles. This section shows the power of the
model based on A-life technology by analyzing the robot
behavior and corresponding neural networks evolved.

CAM-brain is an evolved neural network based on CA.
This article uses one of the CAM-brain models, the CoDi
model, and the process of developing neural networks
and signaling among neurons. This process consists of two
phases. One is a growth phase that builds the structure of
the neural network. The other is a signaling phase that
sends and receives signals among neurons.

2.1 Method

2.1.1 CA in CoDi

Cellular automata consist of a state, a neighborhood, and a
program. 3 Each cell in the CA space of CAM-brain has one

The growth phase organizes the neural structure and makes
the signal trails among the neurons. Neurons are seeded in
CA-space by the chromosome. The neural network struc-
ture grows by sending out two types of growth signal (axon
and dendrite) to neighborhood cells. A neuron sends axon
growth signals in two opposite directions, as decided by the
chromosome, and dendrite growth signals in the four
remaining directions.

The neighborhood cells become axons or dendrites ac-
cording to the type of growth signal received. They then
propagate the growth signal received to a neighborhood
cell. Each axon cell and each dendrite cell belongs to only
one neuron cell. Once the type of cell is decided, it never
changes. The neural network is constructed and encoded
to the chromosome, and it is then evolved by the genetic
algorithm. 4

2.1.3 Signaling phase

The signaling phase transmits a signal continuously from
input cells to output cells. The signaling trails are formed by
the evolved structure at the growth phase. Each cell has a
different role according to its type. If the cell is a neuron, it
gets a signal from neighborhood dendrite cells and gives a
signal to neighborhood axon cells when the sum of the
signals is greater than its threshold. If the cell is a dendrite,
it collects data from the facing cell and eventually passes it
to the neuron body. If the cell is an axon, it distributes data
originating from the neuron b o d y .

The position of the input and output cells in CA-space is
decided in advance. At first, if input cells produce a signal,
it is sent to facing axon cells which distribute that signal.
Then, neighborhood dendrite cells belonging to other
neurons collect this signal and send it to connected neurons.
The neurons that receive the signal from dendrite cells send
it to axon cells.

144

Finally, dendr i te cells of the output neuron receive the
signal and send it to the output neurons. The output value
can be obta ined from the output neurons. Dur ing the signal-
ing phase, a fitness evaluat ion is executed. Accord ing to the
given task, various methods can be used. This fitness is used
for the evolut ion of the chromosome.

2.1.4 Mobile robot control

Apply ing CAM-bra in to the control of a mobi le robot 5'6
requires the following process. The neural ne twork struc-
ture is made in the growth phase. In the signaling phase,
sensor values from the Khepera s imulator 7 are used as in-
puts to CAM-bra in . C A M - b r a i n transmits signals from in-
put to output cells. As the output values of CAM-bra in are
input to the Khepera simulator, the robot moves. When the
robot bumps against an obstacle or reaches its goal, its
fitness is computed. Chromosomes are reproduced in
p ropor t ion to the result of this evaluation.

There are two main problems with applying this model
to controll ing the robot. Because CAM-bra in cannot utilize
the activation values of the robot sensors perfectly, the
act ivated range of the input neuron is var ied according to
the input value. In addit ion, because a delay t ime is needed
until CAM-bra in gives an output value, we must execute a
dummy signaling phase until the signals from the input cells
arrive at the output cells. This means that the robot can
react appropr ia te ly in several s i tua t ions]

2.2 Results

The robot control ler evolves in 5 • 5 • 5 C A space to
facil i tate easy analysis. Af t e r the 21st generat ion, individu-
als with a fitness value of one keep appearing. Figure 2
shows the t ra jectory of a successful robot. This is less
smooth than that obta ined in our previous work, but this
robo t control ler is smaller, which makes the analysis easier.

F igure 3 shows the archi tecture of the neural ne twork
evolved. The do t ted arrows represent inhibi tory connec-
tions, and the solid arrows represent exci tatory connections.
This d iagram has been ob ta ined by tracing the activation
values of each neuron. There are 12 neurons, but neurons 8,
11, and 12 are not functional because they are not in the
pa th of the input or output neurons. Neurons 2 and 10 are
output neurons which produce the velocity of the left and
right wheels, and neurons 3, 4, 5, and 6 are input neurons.
Neuron 3 is for the front sensor of the robot , neurons 5 and
6 are for the left sensors of the robot , and neuron 4 is for the
right sensor of the robot.

The architecture of the control ler has direct connections
from input to output neurons. These connect ions play a role
in turning left and right: if neuron 5 has a high activation
value (which means that there is no obstacle on the left side
of the robot because the sensor values of the robot are
scaled inversely), neuron 10 (right wheel) produces a posi-
tive signal (because neuron 5 fires an exci tatory signal to
neuron 10). If neuron 4 has a low activation value (there is
an obstacle on the right side of the robot) , neuron 2 (left

Fig. 2. The trajectory of a successful robot

Fig. 3. Schematic diagram of the neural network evolved

wheel) produces 0 (because neuron 5 cannot fire neuron 2).
The velocity of each wheel is decided according to the value
of the output neurons. It becomes 5 (if the output value is
posit ive), - 5 (if negative) , or 0 (otherwise). The values of
the output neuron make the robot turn left. Similarly, the
robot can turn right with an output from neuron 7.

3 Application to softbot

The world-wide web (W W W) has a large, widely distrib-
uted collection of documents , which can be added to,

deleted, or modified dynamically. Moreover, the document
style is varied. It takes considerable time and effort for
users to search the web in this environment. For these rea-
sons, several search engines have been investigated and
developed.

Conventional search engines for retrieving information
on the web are.devised for mainly static and nondistributed
environments. With these engines, the end user sends
queries to the server that maintains the index files to get the
relevant document lists. The user's requests are processed
through the use of index files, which are made and updated
by off-line robot agents that collect and analyze the docu-
ments. Because of their fast response time, these search
engines are in general use, but they have several limitations.
First, they cannot cope with dynamic changes in documents.
Second, they can delete important data by incorrect index-
ing, and by missing the relations between documents. Third,
they cannot reflect the user's preferences or habits. To over-
come these limitations, a new method is required to replace
index-based robot agents.

Our A-life agent is very similar to Infospider, that was
originally proposed by Menczer. ~ It has a population of on-
line agents that search documents by deciding their own
actions locally. Each agent in a population can reproduce or
disappear according to the relevancy of the documents
retrieved by the agent. The population of agents converges
to optimal states through evolution. However, if we incor-
porate the user's preference, we can provide accurate infor-
mation more quickly, and personalize the agents for each
user. By updating the user profile at each query, we can
reflect the user's preferences. A-life agents maintain their
competence by adapting to the user's preference, even
though this may change over time.

Several methods have been proposed to retrieve more
accurate information by using the web's large, dynamic,
distributed environment. Autonomous agents or semiin-
telligent agents could manage the large amounts of informa-
tion available online, and estimate the user's preferences and
habits. 9 The weighted keyword vector representation is ap-
plied to WWW information filtering. 9'1~ Several machine-
learning techniques have been suggested to produce
effective information agents. These would yield, for ex-
ample, agents that perform look-ahead searches and provide
suggestions to the user on the basis of reinforcement learn-
ing. a~ NewT is another multiagent system that uses evolution
and relevance feedback for information filteringY

3.1 Method

The authors of web documents tend to classify them accord-
ing to subjects, and connect them in related topics. This
tendency results in a semantic topology, which defines the
correlation of documents. If some documents are relevant
to the user, the links in the current document are also highly
relevant to the user. Also, the links close to meaningful
keywords are probably more useful than other links. The
artificial-life agent can reduce the search space by using
this property. It has a population of multiple retrieval

145

agents. The energy of each agent in the population is in-
creased or decreased by the relevance of the document
retrieved by the agent itself. This method uses the genetic
algorithm based on local selection. The algorithm is given
below.

Initialize agents;
Obtain queries from user;
while (there is an alive agent) {

Get document Da pointed by current agent;
Pick an agent a randomly;
Select a link and fetch selected document Da,;
Compute the relevancy of document Da,;
Update energy (E,) according to the document relevancy;
if (Ea > e)

Set parent and offspring's genotype appropriately;
Mutate offspring's genotype;

else if (Ea < 0)
Kill agent a;

}
Update user profile.

3.1.1 Initialization

Each agent's starting point is initialized by a user profile.
The genotype is composed of confidence and energy. Con-
fidence is the degree to which an agent trusts the descrip-
tions that a document contains about its outgoing links, and
energy represents the agent's relevancy to the given que-
ries. The energy is initialized to a constant threshold e/2,
and confidence is chosen randomly.

3.1.2 Link selection

The relevancy of each link in the current document is esti-
mated by computing the physical distances to keywords
matched to the user's queries. This estimation is based on
the assumption that any links close to the keywords are
generally more relevant to the user's interest than other
links. For each link l in a document, the relevancy is calcu-
lated as

~ , match(k,Q)
)~l = z~

k~tokens ~]

(i)

where k is the number of tokens in document D,,, Q is the
number of queries, and distance(k,/) is the number of links
separating k and l in the document. Here match(k,Q) is 1 if
k is in Q. Otherwise, it becomes 0. To select a link to follow,
we use a stochastic selector to pick a link with a probability
distribution which is scaled up and normalized by the
agent's confidence.

Confidence evolves by selection, reproduction, and
mutation. Different confidence values can implement
search strategies such as best-first, random walk, or any
middle course. With this distribution, an agent selects which
link to follow.

146

3.1.3 Updating energy

After the agent has fetched the document reached by the
selected link, it estimates the relevancy of the document.
This is proportional to the hit rate of the number of key-
words to the whole tokens in the document. The relevancy
of the document is represented by

/~-, match(k,Q)
r(D~) : ~ " d i s t a n c e (k , D ,) (2,)

where number(k,Da) is the number of keywords in D,,. A n
agent 's energy is updated according to the relevancy of the
document. The use of the network resource means a loss of
energy. If the document has already been visited, an in-
crease in energy is not expected.

EA = EA -- expense + r(D,,) if D, is new (3)

where r(Da) is the relevancy of the document, and expense
is the loss of energy.

3.1.4 Reproduction

Each agent can reproduce offspring or be killed by com-
paring the agent's energy with a constant threshold e. If the
agent 's energy exceeds the threshold, it reproduces off-
spring. The offspring's energy is fed by splitting the parent 's
energy, and the offspring is mutated to provide the evolu-
tion with the necessary variation. The confidence boundary
is determined by the relevancy of the current document.
This mechanism can cause the population of agents to be
biased toward regions where the relevant documents exist.

3.1.5 Updating the user profile

The user profile should reflect the user's interests. Since the
agents learn about the user's interests by getting the user's
queries and feedback, it is important to update the user
profile after each search. The updated user profile is com-
posed of relevant document uniform resource locators
(URLs) and other interesting subjects. With this property, a
user can personalize the agents as queries are repeatedly
given.

3.2 Results

In order to provide a fair and consistent evaluation of the
system's performance, we restricted the search space to
the local machine instead of the real Web. We collected a
number of hyper text markup language (HTML) pages on
various topics, classified the pages according to subject, and
put them in different directories. The initial user profile was
composed of the top directories of the local machine. The
initial number of agents depends on the number of URLs
in the user profile. We compared the A-life agents with
breadth first search (BFS) and random search agents. BFS
searches all documents exhaustively, while the A-life agents
can search documents selectively.

07 I02 0.6
0.5
0.4

~. o.s

. , ~ - - 4 b " ~ ~ . A - ~ ~ A - - - A - - ~ . 0.1 I ~ - ~ - - ~ ~ " - - , ~ - , . A.- " ' ' - - A
0 I I I i i I i i t i

1 2 3 4 5 6 7 8 9 10
T i m e

Fig. 4. Hit rate on relevant documents. Squares, preposed; diamonds,
breadth first search; triangles, random search

12

10

F- 8

6

4

i I

1 2

i t i t i i i

3 4 5 6 7 8 9
Sequence of Queries

Fig. 5. Response times for queries in the same category. Squares', task
1; diamonds', task 2

The initial population was ten agents. The population
size has no limitation in run time. The constant threshold e
was set to 0.4. An agent whose energy is greater than e can
reproduce offspring. The initial agent 's energy is set at e/2.
This agent uses the network resources, which means a loss
of energy. This loss of energy is called "expense," and set at
0.1. The process is influenced by the expense value. If we
increase the expense value, the agents have less chance to
search further. Irrelevant agents may disappear quickly,
and there is some possibility that even some relevant agents
can disappear without searching the regions sufficiently. We
selected the expense value by trial and error.

The most important property of the A-life agents is that
they can discard useless agents which irrelevant to the user's
preference. Figure 4 shows the hit rate on relevant docu-
ments. In the beginning, the performance was no better
than other search methods, but it improved rapidly. This
result implies that each agent can effectively cut out irrel-
evant document paths. The action of each agent gradually
goes toward relevant document paths. By using this
property, A-life agents can reduce access to irrelevant
documents.

We tested the performance improvement in cases where
the user gives all queries in the same category. For each
query, the user profile is updated according to document
relevancy, and the agents adapt to the user's preference. If
the user gives queries in the same category, our agents
improve their response time according to these queries.
Figure 5 shows the results of two tasks. In task 1, the

sequence of queries is computer, artificial intelligence, neu-
ral network, agent, evolution, user feedback, retrieval, and
search. In task 2, the sequence is computer, document style
semantics and specification language (DSSSL), standard
generalized markup language (SGML), grove, property set,
repository, and database. Initial response time is not good,
but as the queries are given repeatedly, we can see an im-
provement in the response time for the two tasks.

4 Concluding remarks

This article has introduced the key concepts of A-life tech-
nology, and shown its potential in applications such as con-
trolling a mobile robot and developing adaptive agents on
the WWW. While artificial intelligence uses the technology
of computation as a model of intelligence, A-life is attempt-
ing to develop a new computational paradigm based on
biological processes.

Acknowledgment This work was supported by A Korea Research
Foundation Grant (KRF-2002-005-H20002) and Super Intelligent Chip
Project.

147

2. De Gaffs H (1996) CAM-Brain: ATR's billion neuron artificial
brain project. A three-year progress report. Proceedings of an
International Conference on Evolutionary Computation, IEEE,
Piscataway, p 886-891

3. Green DG (1993) Cellular automata, http://www.csu.edu.au/
complex_systems/tutoff all .html

4. Gers F, de Gaffs H, Korkin M (1997) CoDi-lBit: a simplified
cellular automata-based neuron model. Proceedings of an
Artificial Evolution Conference

5. Floreano D, Mondada F (1996) Evolution of homing navigation in
a real mobile robot. IEEE Trans Syst Man Cybern 26:396407

6. Michel O (1995) Khepera simulator version 1.0. User Manual
7. Cho SB, Song GB, Lee JH, et al. (1998) Evolving CAM-Brain

to control a mobile robot. Proceedings of an International
Conference on Artificial Life and Robotics, AROB, Oita, p 271-
274

8. Menczer F (1997) ARACHNID: adaptive retrieval agents choos-
ing heuristic neighborhoods for information discovery. Proceed-
ings of the 14th International Conference on Machine Learning

9. Balabanovicand M, Shoham Y (1995) Learning information
retrieval agents: experimental with automated web browsing.
Proceedings of AAAI SSS Information Gathering from Heteroge-
neous Distributions Envst

10. Armstrong R, Freitag D, Joachims T, et al. (1995) Web watcher: a
learning apprentice for the world wide web. Proceedings of AAAI
SSS Information Gathering from Heterogeneous Distributions.
Envst

11. Sheth B, Maes P (1993) Evolving agents for personalized informa-
tion filtering. Proceedings of the 9th Conference on Artificial
Intelligence for Application

References

1. Langton CG (1989) Artificial life. Proceedings of Artificial Life.
Addison-Wesley, Reading, p 1M8

