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Abstract  Adaptation gives rise to a kind of complexity 
that greatly hinders our attempts to solve some of the 
most important problems currently posed by our world. 
Recently, there has been an attempt to build a complex 
adaptive system which is rich in autonomy and creativity, 
with the ideas and methodologies of artificial life (A-fife). 
This article presents the concepts and methodologies of A- 
life, and shows two typical applications based on them. 
These systems not only develop new functionality sponta- 
neously, but also grow and evolve their own structure 
autonomously. They have been applied to controlling a mo- 
bile robot and developing adaptive agents on the world- 
wide web. 

K e y  words  Artif ic ial  l ife - Complex adaptive systems - 
Robot-  Softbot 

1 Introduction 

Intelligent systems can adaptively estimate continuous 
functions from data without specifying mathematically how 
outputs depend on inputs. System behavior is called intelli- 
gent  if the system emits appropriate problem-solving re- 
sponses  when faced with problem stimuli. Recently, some 
researchers have tried to synthesize inte l l igent  systems by 
using artificial life (A-life) technologies. 

A-life research aims at studying man-made systems 
which exhibit behaviors characteristic of natural living sys- 
tems. It complements traditional biological sciences which 
are concerned with the analysis of living organisms by at- 
tempting to synthesize life-like behavior within computers; 
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extending the empirical foundation upon which biology is 
based from life as we  k n o w  it to a larger picture of life as it 
could  be] The essential features of A-life models are as 
follows: 

- they work with populations of simple programs, where no 
single program directs all the other programs; 

- each program details the way in which a simple entity 
reacts to local situations in its environment, including 
encounters with other entities; 

- t h e r e  are no rules in the system that dictate global 
behavior, and higher behavior is therefore emergent. 

It is the concept of emergent properties that shows 
the  nature of A-life research. Emergent properties are 
exhibited by a collection of interacting entities whose global 
behavior cannot be reduced to a simple aggregate of the 
individual contributions of these entities. In artificial intelli- 
gence, conventional methods cannot reveal or explain the 
emergent properties because they are generally reduction- 
ist, i.e., they decompose a system into its constituent sub- 
systems and then study these in isolation using a top-down 
approach. 

However, A-life adopts a bottom-up approach, which 
starts with a collection of entities exhibiting simple and 
well-understood behavior patterns, and synthesizes these  
into more complex systems. Many technologies are used in 
A-life research, such as cellular automata, the Lindenmayer 
system, the  genet ic  algorithm, neural networks, and so on, 
but the key idea is the evolutionary algorithm. In this sense, 
a practical goal of A-life can be redefined as finding a 
mechanism for an evolutionary process to be used in the 
automatic design and creation of artifacts. Figure 1 shows 
the main research areas in artificial life. 

The genetic algorithm, one of the evolutionary algo- 
rithms, is a model of machine learning derived from the 
procedure of evolution in nature. This is done by creating a 
population of individuals that are represented  by chromo- 
somes. A chromosome can be thought of as a string of 
human genes. The individuals in the population go through 
evolution. This is an evolutionary procedure in which differ- 
ent individuals compete for resources in the environment. 
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Fig. 1. T h e  m a i n  r e sea rch  areas  in artificial life 

of four states: neuron, axon, dendrite, and blank. If the state 
of the cell is blank, it is an empty space. Blank cells do not 
participate in any cell interactions during the signaling of 
neural networks. Neuron cells collect neural signals f rom the 
surrounding dendrite cells. If the sum of  the collected signals 
is greater than the threshold, then the neuron cells send the 
signals to the surrounding axon cells. These cells distribute 
signals originating from neuron cells. Dendrite cells collect 
signals and eventually pass them to neuron cells. 4 

Neighborhood cells are the surrounding cells (north, 
south, west, and east) in 2-D C A  space (top and bot tom are 
added in 3-D C A  space). The state of  each cell, and the 
program or rule deciding the state of  each cell with the 
states of its neighbors, are decided by the chromosomes.  
One chromosome has the same number  segments as cells, 
and can make one neural network. One segment corre- 
sponds to one cell, and can change a blank cell to a neuron 
cell. It also decides the directions in which to send received 
signals to neighborhood cells. 

Better individuals are more likely to survive and propagate 
their genetic material to their offspring. 2.1.2 Growth phase 

2 Application to a mobile robot 

There have been several attempts to develop an artificial 
brain using engineering techniques. Among  these, CAM- 
brain develops neural networks based on cellular automata 
by evolution. Owing to their particular features, cellular 
automata (CA) can be evolved very quickly on parallel 
hardware such as CAM-8 at MIT, or CBM at ATR.  2 

Evolutionary engineering (EE)  is an approach used to 
evolve neural network modules with particular functions in 
order to develop an artificial brain. It has been extensively 
exploited to apply each neural network module to a specific 
problem. We have attempted to evolve a module of CAM- 
brain for the problem of robot  control, especially the 
Khepera simulator. A simulation means that an appropriate 
neural architecture emerges to make the Khepera simulator 
navigate the given environment without bumping against 
walls and obstacles. This section shows the power of the 
model  based on A-life technology by analyzing the robot  
behavior and corresponding neural networks evolved. 

CAM-brain is an evolved neural network based on CA. 
This article uses one of the CAM-brain  models, the CoDi 
model, and the process of developing neural networks 
and signaling among neurons. This process consists of two 
phases. One is a growth phase that builds the structure of 
the neural network. The other is a signaling phase that 
sends and receives signals among neurons. 

2.1 Method 

2.1.1 CA in CoDi 

Cellular automata consist of a state, a neighborhood, and a 
program. 3 Each cell in the CA space of CAM-brain has one 

The growth phase organizes the neural structure and makes 
the signal trails among the neurons. Neurons are seeded in 
CA-space by the chromosome. The neural network struc- 
ture grows by sending out two types of growth signal (axon 
and dendrite) to neighborhood cells. A neuron sends axon 
growth signals in two opposite directions, as decided by the 
chromosome, and dendrite growth signals in the four 
remaining directions. 

The neighborhood cells become axons or dendrites ac- 
cording to the type of growth signal received. They then 
propagate the growth signal received to a neighborhood 
cell. Each axon cell and each dendrite cell belongs to only 
one neuron cell. Once the type of cell is decided, it never 
changes. The neural network is constructed and encoded 
to the chromosome,  and it is then evolved by the genetic 
algorithm. 4 

2.1.3 Signaling phase 

The signaling phase transmits a signal continuously from 
input cells to output  cells. The signaling trails are formed by 
the evolved structure at the growth phase. Each cell has a 
different role according to its type. If the cell is a neuron, it 
gets a signal from neighborhood dendrite cells and gives a 
signal to neighborhood axon cells when the sum of the 
signals is greater than its threshold. If the cell is a dendrite, 
it collects data from the facing cell and eventually passes it 
to the neuron body. If the cell is an axon, it distributes data 
originating from the neuron b o d y .  

The position of the input and output cells in CA-space is 
decided in advance. At  first, if input cells produce a signal, 
it is sent to facing axon cells which distribute that signal. 
Then, neighborhood dendrite cells belonging to other 
neurons collect this signal and send it to connected neurons. 
The neurons that receive the signal from dendrite cells send 
it to axon cells. 
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Finally,  dendr i te  cells of the output  neuron  receive the 
signal and send it to the output  neurons.  The  output  value 
can be obta ined  from the output  neurons.  Dur ing  the signal- 
ing phase,  a fitness evaluat ion is executed. Accord ing  to the 
given task, various methods  can be used. This fitness is used 
for the evolut ion of the chromosome.  

2.1.4 Mobile robot control 

Apply ing  CAM-bra in  to the control  of a mobi le  robot  5'6 
requires  the following process. The neural  ne twork  struc- 
ture is made  in the growth phase.  In the signaling phase,  
sensor values from the Khepera  s imulator  7 are used as in- 
puts to CAM-bra in .  C A M - b r a i n  transmits signals from in- 
put  to output  cells. As  the output  values of CAM-bra in  are 
input  to the Khepera  simulator,  the robot  moves.  When  the 
robot  bumps against an obstacle or  reaches  its goal, its 
fitness is computed.  Chromosomes  are reproduced  in 
p ropor t ion  to the result of this evaluation.  

There  are two main problems  with applying this model  
to controll ing the robot.  Because CAM-bra in  cannot  utilize 
the activation values of the robot  sensors perfectly,  the 
act ivated range of the input  neuron is var ied  according to 
the input  value. In  addit ion,  because a delay t ime is needed  
until CAM-bra in  gives an output  value, we must  execute a 
dummy signaling phase until the signals from the input  cells 
arrive at the output  cells. This means that  the robot  can 
react  appropr ia te ly  in several  s i tua t ions]  

2.2 Results  

The  robot  control ler  evolves in 5 • 5 • 5 C A  space to 
facil i tate easy analysis. Af t e r  the 21st generat ion,  individu- 
als with a fitness value of one keep  appearing.  Figure 2 
shows the t ra jectory of  a successful robot.  This is less 
smooth  than that  obta ined  in our  previous work, but  this 
robo t  control ler  is smaller,  which makes  the analysis easier. 

F igure  3 shows the archi tecture of the neural  ne twork  
evolved. The do t ted  arrows represent  inhibi tory connec- 
tions, and the solid arrows represent  exci tatory connections. 
This d iagram has been ob ta ined  by tracing the activation 
values of each neuron. There  are 12 neurons,  but  neurons 8, 
11, and 12 are not  functional because they are  not  in the 
pa th  of the input  or  output  neurons.  Neurons  2 and 10 are 
output  neurons which produce  the velocity of  the left and 
right wheels, and neurons 3, 4, 5, and 6 are input  neurons. 
Neuron  3 is for the front sensor of  the robot ,  neurons  5 and 
6 are for the left sensors of the robot ,  and neuron  4 is for the 
right sensor of the robot.  

The architecture of the control ler  has direct  connections 
from input  to output  neurons.  These  connect ions play a role 
in turning left and right: if neuron 5 has a high activation 
value (which means that there  is no obstacle on the left side 
of the robot  because the sensor values of the robot  are 
scaled inversely),  neuron 10 (right wheel) produces  a posi- 
tive signal (because neuron  5 fires an exci tatory signal to 
neuron  10). If neuron  4 has a low activation value (there is 
an obstacle on the right side of the robot) ,  neuron  2 (left 

Fig. 2. The trajectory of a successful robot 

Fig. 3. Schematic diagram of the neural network evolved 

wheel)  produces  0 (because neuron 5 cannot  fire neuron 2). 
The velocity of each wheel  is decided according to the value 
of  the output  neurons.  It becomes 5 (if the output  value is 
posit ive),  - 5  (if negative) ,  or  0 (otherwise).  The  values of 
the output  neuron make  the robot  turn left. Similarly, the 
robot  can turn right with an output  from neuron  7. 

3 Application to softbot 

The world-wide web ( W W W )  has a large, widely distrib- 
uted collection of documents ,  which can be added  to, 



deleted, or modified dynamically. Moreover, the document 
style is varied. It takes considerable time and effort for 
users to search the web in this environment. For these rea- 
sons, several search engines have been investigated and 
developed. 

Conventional search engines for retrieving information 
on the web are.devised for mainly static and nondistributed 
environments. With these engines, the end user sends 
queries to the server that maintains the index files to get the 
relevant document lists. The user's requests are processed 
through the use of index files, which are made and updated 
by off-line robot agents that collect and analyze the docu- 
ments. Because of their fast response time, these search 
engines are in general use, but they have several limitations. 
First, they cannot cope with dynamic changes in documents. 
Second, they can delete important data by incorrect index- 
ing, and by missing the relations between documents. Third, 
they cannot reflect the user's preferences or habits. To over- 
come these limitations, a new method is required to replace 
index-based robot agents. 

Our A-life agent is very similar to Infospider, that was 
originally proposed by Menczer. ~ It has a population of on- 
line agents that search documents by deciding their own 
actions locally. Each agent in a population can reproduce or 
disappear according to the relevancy of the documents 
retrieved by the agent. The population of agents converges 
to optimal states through evolution. However, if we incor- 
porate the user's preference, we can provide accurate infor- 
mation more quickly, and personalize the agents for each 
user. By updating the user profile at each query, we can 
reflect the user's preferences. A-life agents maintain their 
competence by adapting to the user's preference, even 
though this may change over time. 

Several methods have been proposed to retrieve more 
accurate information by using the web's large, dynamic, 
distributed environment. Autonomous agents or semiin- 
telligent agents could manage the large amounts of informa- 
tion available online, and estimate the user's preferences and 
habits. 9 The weighted keyword vector representation is ap- 
plied to WWW information filtering. 9'1~ Several machine- 
learning techniques have been suggested to produce 
effective information agents. These would yield, for ex- 
ample, agents that perform look-ahead searches and provide 
suggestions to the user on the basis of reinforcement learn- 
ing. a~ NewT is another multiagent system that uses evolution 
and relevance feedback for information filteringY 

3.1 Method 

The authors of web documents tend to classify them accord- 
ing to subjects, and connect them in related topics. This 
tendency results in a semantic topology, which defines the 
correlation of documents. If some documents are relevant 
to the user, the links in the current document are also highly 
relevant to the user. Also, the links close to meaningful 
keywords are probably more useful than other links. The 
artificial-life agent can reduce the search space by using 
this property. It has a population of multiple retrieval 
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agents. The energy of each agent in the population is in- 
creased or decreased by the relevance of the document 
retrieved by the agent itself. This method uses the genetic 
algorithm based on local selection. The algorithm is given 
below. 

Initialize agents; 
Obtain queries from user; 
while (there is an alive agent) { 

Get document Da pointed by current agent; 
Pick an agent a randomly; 
Select a link and fetch selected document Da,; 
Compute the relevancy of document Da,; 
Update energy (E,) according to the document relevancy; 
if (Ea > e) 

Set parent and offspring's genotype appropriately; 
Mutate offspring's genotype; 

else if (Ea < 0) 
Kill agent a; 

} 
Update user profile. 

3.1.1 Initialization 

Each agent's starting point is initialized by a user profile. 
The genotype is composed of confidence and energy. Con- 
fidence is the degree to which an agent trusts the descrip- 
tions that a document contains about its outgoing links, and 
energy represents the agent's relevancy to the given que- 
ries. The energy is initialized to a constant threshold e/2, 
and confidence is chosen randomly. 

3.1.2 Link selection 

The relevancy of each link in the current document is esti- 
mated by computing the physical distances to keywords 
matched to the user's queries. This estimation is based on 
the assumption that any links close to the keywords are 
generally more relevant to the user's interest than other 
links. For each link l in a document, the relevancy is calcu- 
lated as 

~ ,  match(k,Q) 
)~l = z~ 

k~tokens ~ ] 

(i) 

where k is the number of tokens in document D,,, Q is the 
number of queries, and distance(k,/) is the number of links 
separating k and l in the document. Here match(k,Q) is 1 if 
k is in Q. Otherwise, it becomes 0. To select a link to follow, 
we use a stochastic selector to pick a link with a probability 
distribution which is scaled up and normalized by the 
agent's confidence. 

Confidence evolves by selection, reproduction, and 
mutation. Different confidence values can implement 
search strategies such as best-first, random walk, or any 
middle course. With this distribution, an agent selects which 
link to follow. 
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3.1.3 Updating energy 

After  the agent has fetched the document reached by the 
selected link, it estimates the relevancy of the document.  
This is proportional to the hit rate of the number  of key- 
words to the whole tokens in the document. The relevancy 
of the document  is represented by 

/~-, match(k,Q) 
r(D~) : ~ " d i s t a n c e ( k , D , )  (2,) 

where number(k,Da) is the number  of keywords in D,,. A n  
agent 's energy is updated according to the relevancy of the 
document.  The use of the network resource means a loss of 
energy. If the document  has already been visited, an in- 
crease in energy is not expected. 

EA = EA -- expense + r(D,,) if D, is new (3) 

where r(Da) is the relevancy of the document,  and expense 
is the loss of energy. 

3.1.4 Reproduction 

Each agent can reproduce offspring or be killed by com- 
paring the agent's energy with a constant threshold e. If the 
agent 's energy exceeds the threshold, it reproduces off- 
spring. The offspring's energy is fed by splitting the parent 's  
energy, and the offspring is mutated to provide the evolu- 
tion with the necessary variation. The confidence boundary 
is determined by the relevancy of the current document.  
This mechanism can cause the population of agents to be 
biased toward regions where the relevant documents  exist. 

3.1.5 Updating the user profile 

The user profile should reflect the user's interests. Since the 
agents learn about the user's interests by getting the user's 
queries and feedback, it is important  to update the user 
profile after each search. The updated user profile is com- 
posed of relevant document  uniform resource locators 
(URLs)  and other interesting subjects. With this property, a 
user can personalize the agents as queries are repeatedly 
given. 

3.2 Results 

In order to provide a fair and consistent evaluation of the 
system's performance, we restricted the search space to 
the local machine instead of the real Web. We collected a 
number  of hyper text markup language (HTML)  pages on 
various topics, classified the pages according to subject, and 
put them in different directories. The initial user profile was 
composed of the top directories of the local machine. The 
initial number  of agents depends on the number  of URLs  
in the user profile. We compared the A-life agents with 
breadth first search (BFS) and random search agents. BFS 
searches all documents exhaustively, while the A-life agents 
can search documents selectively. 
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The initial population was ten agents. The population 
size has no limitation in run time. The constant threshold e 
was set to 0.4. An  agent whose energy is greater than e can 
reproduce offspring. The initial agent 's energy is set at e/2. 
This agent uses the network resources, which means a loss 
of energy. This loss of  energy is called "expense," and set at 
0.1. The process is influenced by the expense value. If we 
increase the expense value, the agents have less chance to 
search further. Irrelevant agents may disappear quickly, 
and there is some possibility that even some relevant agents 
can disappear without searching the regions sufficiently. We 
selected the expense value by trial and error. 

The most  important  property of the A-life agents is that 
they can discard useless agents which irrelevant to the user's 
preference. Figure 4 shows the hit rate on relevant docu- 
ments. In the beginning, the performance was no better 
than other search methods, but it improved rapidly. This 
result implies that each agent can effectively cut out irrel- 
evant document  paths. The action of each agent gradually 
goes toward relevant document  paths. By using this 
property, A-life agents can reduce access to irrelevant 
documents.  

We tested the performance improvement in cases where 
the user gives all queries in the same category. For  each 
query, the user profile is updated according to document  
relevancy, and the agents adapt to the user's preference. If 
the user gives queries in the same category, our agents 
improve their response time according to these queries. 
Figure 5 shows the results of two tasks. In task 1, the 



sequence of queries is computer, artificial intelligence, neu- 
ral network, agent, evolution, user feedback, retrieval, and 
search. In task 2, the sequence is computer, document style 
semantics and specification language (DSSSL), standard 
generalized markup language (SGML), grove, property set, 
repository, and database. Initial response time is not good, 
but as the queries are given repeatedly, we can see an im- 
provement in the response time for the two tasks. 

4 Concluding remarks 

This article has introduced the key concepts of A-life tech- 
nology, and shown its potential in applications such as con- 
trolling a mobile robot and developing adaptive agents on 
the WWW. While artificial intelligence uses the technology 
of computation as a model of intelligence, A-life is attempt- 
ing to develop a new computational paradigm based on 
biological processes. 
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