
Received: 10 September 2018 Revised: 31 January 2019 Accepted: 1 March 2019

DOI: 10.1111/exsy.12403
S P E C I A L I S S U E P A P E R
Predicting repayment of borrows in peer‐to‐peer social lending
with deep dense convolutional network
Ji‐Yoon Kim | Sung‐Bae Cho
Department of Computer Science, Yonsei

University, Seoul, Korea

Correspondence

Sung‐Bae Cho, Department of Computer

Science, Yonsei University, 50 Yonsei‐ro,
Sinchon‐dong, Seodaemun‐gu, Seoul, Korea.
Email: sbcho@yonsei.ac.kr

Funding information

Korea Electric Power Corporation, Grant/

Award Number: R18XA05
Expert Systems. 2019;e12403.

https://doi.org/10.1111/exsy.12403
Abstract

In peer‐to‐peer lending, it is important to predict the repayment of the borrower to

reduce the lender's financial loss. However, it is difficult to design a powerful feature

extractor for predicting the repayment as user and transaction data continue to

increase. Convolutional neural networks automatically extract useful features from

big data, but they use only high‐level features; hence, it is difficult to capture a variety

of representations. In this study, we propose a deep dense convolutional network for

repayment prediction in social lending, which maintains the borrower's semantic

information and obtains a good representation by automatically extracting important

low‐ and high‐level features simultaneously. We predict the repayment of the bor-

rower by learning discriminative features depending on the loan status. Experimental

results on the Lending Club dataset show that our model is more effective than other

methods. A fivefold cross‐validation is performed to run the experiments.
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1 | INTRODUCTION

As online services continue to grow rapidly, a large amount of data is being generated (Chen, Mao, & Liu, 2014). Big data have been used to

address critical issues that occur in the social, economic, and technical spheres (Kim & Cho, 2018; Ronao & Cho, 2016a). Peer‐to‐peer (P2P) lend-

ing is one of the FinTech services that directly match lenders with borrowers through online platforms. It generates huge transactional data and

attracts many users (Zhao et al., 2017). Transactional data on P2P lending is used to address issues such as credit scorings and default prediction.

The lenders suffer from financial losses when their borrowers do not pay or partially pay them in the repayment period. The lenders may suffer

due to the default of the borrowers (Xu, Chen, & Chau, 2016). To reduce the financial risk of the lenders, it is important to predict defaults and

assess the creditworthiness of the borrowers (Serrano‐Cinca, Gutiérrez‐Nieto, & López‐Palacios, 2015). If we effectively leverage a large amount

of transactional data processed online, we can support the prediction of borrowers' repayment (Yan, Yu, & Zhao, 2015). Related studies generally

select features such as the borrower characteristics and credit history from the lending data or extract new features for predicting the repayment

(Malekipirbazari & Aksakalli, 2015). They attempted to model repayment prediction and credit assessment by employing a machine learning algo-

rithm (Namvar, Siami, Rabhi, & Naderpour, 2018).

It is difficult to define a discriminative feature extractor for repayment prediction. There is a limit to extract good low‐ and high‐level data rep-

resentation by capturing the relationship between large and complex data using statistical and manual methods (Philip Chen & Zhang, 2014). A

poor data representation can decrease the performance even for an advanced and sophisticated machine learner (Najafabadi et al., 2015).

The Lending Club in the United States provides complete loan data containing the current loan status and latest payment information (https://

www.lendingclub.com). From the data of 2007 to 2017, it consists of approximately 1.7 million instances with 111 attributes. The structure of the

data is huge and complex, and it is difficult to extract useful high‐level features for repayment prediction. Table 1 summarizes the data attributes.
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TABLE 1 The summary of Lending Club data

Type Description
No. of
variable

Predictor Current status of the loan (charged off or fully paid) 1

Borrower information Demographic or personal information of the borrowers (such as ID, grade, employment length,

home ownership, annual income, and zip code)

18

Loan characteristics Information for loan type (such as term, interest rate, instalment, purpose, issue day, total payment,

and loan amount)

24

Credit history Information of the lenders for credit card, check card, and delinquent record 68
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Convolutional neural network (CNN), one of the typical deep learning methods, automatically extracts high‐level and complex features from big

data (Chen & Lin, 2014; LeCun, Bottou, Bengio, & Haffner, 1998). It is possible to capture the statistical pattern of input hierarchically by

extracting general features from the lower layers and high‐level features from the higher layers with several convolution operations (Ronao &

Cho, 2016b). It often outperforms the state‐of‐the‐art performance achieved by handcrafted features (Qiu, Wu, Ding, Xu, & Feng, 2016).

Because the CNN classifier uses only high‐level features, it is difficult to capture a good representation from large and complex P2P lending

data. As an alternative, advanced CNNs have been proposed to maximize semantic information flow from low to high levels (Huang, Sun, Liu,

Sedra, & Weinberger, 2016; Xie, Girshick, Dollar, Tu, & He, 2017; Zagoruyko & Komodakis, 2016). One of them, a dense convolutional network

(DenseNet; Huang, Liu, Matten, & Weingerger, 2017), is a feed‐forward network in which all layers are directly connected. This achieves a good

representation by using general and high‐level features.

In this study, we propose a model employing DenseNet (Huang et al., 2017) for directly learning the representation in social lending data to not

only improve the classification performance but also obtain a good feature representation for repayment prediction. The proposed network main-

tains the borrower's semantic information and obtains a powerful representation by learning low‐ and high‐level features simultaneously through

dense connectivity. A dense block extracts diversified features of borrowers, and a transition layer merges representative features. Our model

classifies the loan status of a borrower by learning the pattern while maintaining and extracting discriminative features according to the loan status

and improves the overall performance with a good representation.

The main contributions of this study are as follows: (a) We present a powerful architecture based on a deep dense connected convolutional

network, which can obtain diversified features including low‐ and high‐level features to address the repayment prediction of borrowers.

(b) Instead of using a traditional feature extraction method, the proposed method automatically extracts a good representation in the

feature space from a subset of borrowers. That is, it distinguishes the characteristics of borrowers and obtains an excellent representation without

dimension reduction or feature extraction. Our model shows how the systems that do not require handcrafted features outperform other machine

learning algorithms. (c) Extensive experiments conducted on the Lending Club dataset demonstrate that the proposed method achieves the

highest performance among the conventional machine learning and deep learning methods for predicting the repayment.

This paper is organized as follows. Section 2 discusses the related works on P2P social lending. Section 3 describes the proposed DenseNet

architecture for predicting the repayment. In Section 4, we present the experimental results of our proposed architecture compared with other

methods and analyse the results. Section 5 concludes this study.
2 | RELATED WORK

As P2P lending transactions increase, it becomes very important to predict the repayment (Milne & Parboteeah, 2016). Many researchers for

repayment prediction in P2P social lending employ machine learning methods to improve the classification accuracy for defaults, for example,

logistic regression (Guo, Zhou, Luo, Liu, & Xiong, 2016; Lin, Li, & Zheng, 2017; Zhang, Li, Hai, Li, & Li, 2017) and trees such as decision tree

(DT) and random forest (RF; Malekipirbazari & Aksakalli, 2015; Serrano‐Cinca & Gutiérrez‐Nieto, 2016). They also try to extract efficient features

to improve the performance of models that predict the repayment in P2P social lending. In this section, a literature review is presented focusing on

feature engineering.

Some researchers selected features using statistical methods (Polena & Regner, 2016) or information gains (Chen, 2017) before training

machine learning models. The selected features are as follows: loan amount, debt‐to‐income ratio, home ownership, delinquencies, etc. Other

researchers extracted new features based on existing ones. They extracted features related to P2P lending as handcrafted or extracted new fea-

tures using feature extraction techniques such as latent Dirichlet allocation. In particular, Jiang, Wang, Wang, and Ding (2017) presented a debt

default prediction method combined with soft information related to text description. They extracted topic features such as asset, income, work,

family, business, and agriculture from texts to provide qualitative information. These studies have drawbacks in that it is difficult to compare their

performances and generalize these models because they derive unique features (Ronao & Cho, 2016b).
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Studies that use neither feature selection nor feature extraction selected only preprocessed features. They occasionally labelled new classes to

utilize a large amount of data. Fu (2017) labelled “good” and “bad” for 1,320 K data to predict the default. Vinod Kumar, Natarajan, Keerthana,

Chinmayi, and Lakshmi (2016) similarly labelled “good” and “bad” including instances such as “current” and “late.” However, assigning a new class

makes it difficult to compare the performance.

As data are large and complex, it is difficult to extract the discriminative features of borrowers by employing existing data mining and machine

learning techniques (Sohangir, Wang, Pomeranets, & Khoshgoftaar, 2018). Other methods that can extract meaningful patterns are required in big

data. Deep learning provides an opportunity to address the issues for learning the patterns that exist in big data (Najafabadi et al., 2015) and is

more effective when learning patterns in complex data. In this study, we show that a variety of features can be automatically extracted from

big data for predicting repayment.
3 | THE PROPOSED METHOD

Figure 1 shows the proposed architecture for repayment prediction in social lending using DenseNet. We assume that it would be easier to predict

the loan status in the feature space if the network captures the inherent properties of the lending data of a borrower and generalizes them to

other borrowers. The feature space is learned to obtain a good representation from the social lending data of many borrowers. The lending data

are projected onto the learned feature space using the trained network and are predicted using the softmax classifier.

3.1 | Dense convolutional network

3.1.1 | Dense connectivity

DenseNet has direct connections from every layer to all subsequent layers, known as dense connectivity. The low‐ and high‐level features

extracted from the social lending data are reused using dense connectivity. Assume that the output passed through the lth layer from the normal-

ized lending data be xl. The output of the lth layer is

xl ¼ Hl x0; x1;…; xl−1½ �ð Þ; (1)

where Hl(·) is a composite function consisting of a rectified linear unit (Nair & Hinton, 2010) as its activation function and a 3×3 convolution oper-

ation, and [x0, x1, … , xl − 1] represent the concatenation of feature maps generated in convolutional layers 1,2, … ,l − 1. The concatenated general

and high‐level features in social lending data are used for training. Rectified linear unit, which outputs the input x when x ≥ 0 and zero when x < 0,

is an activation function that can effectively propagate the gradient.

3.1.2 | Dense block

DenseNet consists of several dense blocks and transition layers. A dense block contains a directly connected convolution layer, and the size of the

feature maps in each block is maintained. We introduced a 1×1 convolution before each 3×3 convolution to increase the computational efficiency
FIGURE 1 The proposed architecture for repayment prediction. P2P: peer‐to‐peer
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and to reduce the number of feature maps in the dense block that acts as a bottleneck layer. Various features are extracted through the dense

block from the inherent properties such as the borrower information or loan product characteristics from the Lending Club dataset.

DenseNet uses hyperparameter k as the growth rate to control the excessive increase in the number of feature maps. It enables to control the

amount of newly generated information at a fixed growth rate. When Hl generates k feature maps, the number of input feature maps in the lth

layer is given by

lthlayer ¼ k0 þ k × l − 1ð Þ; (2)

where k0 is the number of feature maps in the input layer of the first dense block.

3.1.3 | Transition layer

The transition layer for the down‐sampling layer is referred between dense blocks. This layer consists of convolution and pooling layers, which

reduce the size of feature maps. We merge representative features from social lending data through the transition layer. The hyperparameter

θ, as a compressor, is designed to achieve model compactness in the transition layer. θ has a value between 0 and 1. When the number of feature

maps passed a dense block is n, the number of feature maps passed the transition layer is θn.

3.1.4 | Classification layer

The combination of global average pooling layer and softmax classifier is used as the classification layer for the repayment prediction. The

feature maps generated by repeating several dense blocks and transition layers from the social lending data are arranged in the feature

vector f l = [ f 1, f 2, … , f I] in one dimension through the global average pooling layer. The final layer, the softmax classifier, represents the loan

status d of the borrower (charged off and fully paid).

P d jfð Þ ¼ argmax
d ∈ D

exp fL−1wL þ bL
� �

∑ND
k¼1 exp fL−1wk

� �; (3)

where L represents the index of the final layer, b represents the bias, w represents the connected weight, and ND is the number of classes of loan

status.

3.2 | Architecture

This section describes the details of the architecture and training of DenseNet. The goal of the overall architecture is to minimize the complexity of

the model and reduce the size of the parameters while maintaining the depth of an optimal network. However, DenseNet includes many

structures based on the combination of hyperparameters, which affect the process of capturing the features of the borrower (He & Sun, 2015).

To design an optimal structure, it is necessary to understand the domain; hence, in this study, we aim to predict the repayment involved in social

lending from the borrower's information.

3.2.1 | Structure

We investigate various architectures for learning good representations using validation sets to use the architecture suitable for repayment predic-

tion. We use the best‐performed architecture as described in Table 2. Our structure consists of two dense blocks and one transition layer. The

convolutional and pooling layers in DenseNet use learnable parameters, and these layers are optimized during training.

The lending data from 64 feature maps pass an initial convolution. The dense blocks use 1×1 and 3×3 convolution as a bottleneck layer. The

transition layer consists of 1×1 convolution and average pooling. After each convolutional layer in the dense block and transition layer, a dropout

with a 0.25 probability (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) is applied. In the classification layer, global average

pooling is performed followed by the softmax classifier. Figure 2 shows the proposed dense block and transition layer.

3.2.2 | Training

After modelling the network, it is necessary to define the loss function to evaluate and improve the results. DenseNet is trained using optimization

algorithms to minimize cross‐entropy. The errors are propagated forward. The weights of DenseNet are updated using stochastic gradient descent

(Bottou, 2010), which minimizes categorical cross‐entropy in minibatches of the lending data.



TABLE 2 The proposed DenseNet structure

Layers Output size No. of Parameter Configuration

Convolutional layer (72, 64) 256 1 × 3 conv, stride 1, zero padding

Pooling layer (73, 64) ‐ 1 × 2 max pool, stride 1, zero padding

Dense block (73, 448) 196,608 1 × 1 conv

1 × 3 conv

� �
× 3

Transition layer (72, 224) 100,352 1 × 1 conv, stride 1

1 × 2 avg pool, stride 1

Dense block (72, 608) 196,608 1 × 1 conv

1 × 3 conv

� �
× 3

Classification layer (608) ‐ Global avg pool

(2) 1,218 Fully connected, softmax
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θtþ1 ¼ θt − η∑n
i¼1∇θJ θtð Þ=n; (4)

where θ represents the parameters of DenseNet (not compression), η is the learning rate, n is the batch size, and ∇θJ(θ) represents the gradient of

the objective function J(θ).

We train our model using stochastic gradient descent with a 10−6 weight decay and 0.9 momentum. It is trained for 500 epochs with a batch

size of 512. The learning rate is set to 10−2 initially and is divided by 5 at every 100th epoch.
3.3 | Dropout

Deep neural networks are generally excessively parameterized and are likely to overfit. Regularization techniques have been introduced to address

these problems. One of the regularization techniques, dropout, randomly sets activation to zero with some probability during training (Srivastava

et al., 2014). It is performed independently for each node of the training data. This prevents coadaptation of neurons during training. If the dropout

probability is very large or very small, overfitting or underfitting may occur, respectively. We set the dropout at the probability of 0.25 after all

convolutional layers.
FIGURE 2 (a) Dense block and (b) transition
layer
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4 | EXPERIMENTS

4.1 | Dataset

In this study, we used the dataset of the Lending Club, which is the loan platform with the highest number of loans in the United States (https://

www.lendingclub.com). Since 2007, Lending Club has been providing borrowers' information such as loan purpose, annual income, and home own-

ership. In this dataset, the loan status consists of “fully paid,” “charged off,” “current,” “In grace period,” “Late (16–30 days and 31–120 days),” and

“default.” In this study, only the loan records belonging to fully paid and charged off were selected because we predicted the repayment of the

borrower whose repayment period was expired. From the data of 2015–2016, 152,161 loan entries were used in the experiment (March

2017) from which 33,745 entries (22.2%) were charged off and 118,416 (77.8%) were fully paid.

Many related works have used the Lending Club dataset to study repayment prediction, and some preprocessing methods were employed by

Vinod Kumar et al. (2016). The dataset consists of 110 attributes including borrower information, borrower's credit history, loan characteristics,

and loan status, which are predictive variables as shown in Table 1. Attributes that cannot be used for prediction, such as borrower's ID, URL,

and loan explanation, attributes with more than 50% of missing values, redundant attributes, attributes with the same value, and attributes that

are filled after the borrower starts to repay, were not considered. After the preprocessing, 63 attributes and 143,823 instances were used.

Table 3 lists the attributes that were not considered, and Table 4 lists the features used in the experiment.

All variables are scaled in the [0, 1] range to be used as inputs to DenseNet. The categorical variables are created as dummy variables, and the

continuous variables are min–max normalized using Equation (5) (Kantardzic, 2011) by removing 1% of the outliers. The dataset is split in the ratio

80:20 for the training and test sets, respectively.

X′ ¼ X − Xmin

Xmax − Xmin:
(5)

4.2 | Experimental set‐up

The experiment consists of a comparison with other methods and an analysis of misclassification cases to evaluate the usefulness of DenseNet.

The first experiment compares the performance of deep learning models including CNN, Inception v3 (Szegedy et al., 2015), residual network

(ResNet; He, Zhang, Ren, & Sun, 2016), and Inception‐ResNet (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017) with various widths and depths in

the test set. We demonstrate the performance of DenseNet by comparing the number of parameters used and accuracy. We also compare the

cross‐entropy and accuracy of the validation set for CNN, Inception, ResNet, and DenseNet to verify if overfitting occurs. The second experiment

presents the performance comparisons between conventional machine learning methods and above‐mentioned deep learning models in the val-

idation set. A fivefold cross‐validation is employed to evaluate the overall performance and generalization ability of the classifier (Brown & Mues,

2012). A statistical analysis is performed for quantitative evaluation. The third experiment presents the analysis misclassification cases using a con-

fusion matrix. We can verify the features that DenseNet did not extract by performing this analysis. The data of the well‐classified borrowers and

those of the misclassified borrowers are filtered, and the difference depending on the loan status is examined.

The hyperparameters are adjusted while maintaining the best configuration in the validation set. We test the values of the growth rate k from

32 to 128, compression θ from 0 to 1 added by 0.25, and dropout from 0 to 1 added by 0.25. We saved the model that achieved the highest

performance in the validation set. Table A1 shows the comparison of the performance by the hyperparameters in the validation set.
TABLE 3 List of eliminated attributes

Category Eliminated variables

Attributes that cannot be used for

prediction

id, member_id, emp_title, url, desc, title

Attributes with more than 50% missing

values

mths_since_last_delinq, mths_since_last_major_derog, mths_since_recent_bc_dlq,

mths_since_recent_revol_delinq, open_il_6m, open_il_12m, open_il_24m, mths_since_rcnt_il, total_bal_il,

il_util, mths_since_last_record, open_rv_12m, open_rv_24m, max_bal_bc, open_acc_6m, all_util, inq_fi,

total_cu_tl, inq_last_12m

Redundant attributes annual_inc_joint, dti_joint, verified_status_joint

Attributes with the same value policy_code, pymnt_plan, out_prncp, out_prncp_inv

Attributes that are filled after the

borrower starts to repay

grade, sub_grade, funded_amnt, funded_amnt_inv, issue_d, total_pymnt, total_pymnt_inv, total_rec_prncp,

total_rec_int, total_rec_late_fee, recoveries, collection_recovery_fee, last_pymnt_d, last_pymnt_amnt,

next_pymnt_d, tot_coll_amt

https://www.lendingclub.com
https://www.lendingclub.com


TABLE 4 List of the used feature

Category Feature Description Type

Predictor Loan status Charged off, fully paid Binary

Borrower info Annual income The self‐reported annual income Numeric

Employment length Employment length in years (<1–10>) Nominal

Home ownership Rent, own, mortgage, other Nominal

Address state/zip code The state and zip code provided by the borrower in the loan application Nominal/

Numeric

Loan product

info

Loan amount The listed amount of the loan applied for by the borrower Numeric

Term 36 or 60 months Nominal

Interest rate Interest rate on the loan Numeric

Instalment The monthly payment owed by the borrower Numeric

Purpose Purpose for the loan request Nominal

Verification status If income was verified, not verified, or if the income source was verified by LC Nominal

Initial list status The initial listing status of the loan Nominal

Debt to income A ratio calculated using the borrower's total monthly debt payments on the total debt

obligations

Numeric

Application type Individual application or a joint application with two co‐borrowers Nominal

Last credit pull day The most recent month LC pulled credit for this loan Date

Credit info Total current balance Total current balance of all accounts Numeric

Total bankcard limit Total bankcard high credit/credit limit Numeric

Account now

delinquent

The number of accounts on which the borrower is now delinquent Numeric

and so on (44 variables)

LC: lending club
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The hyperparameters of the deep learning methods used in the first experiment were set as follows: The CNN structure had two sets of

convolutional and pooling layers and was trained for 100 epochs with a batch size of 512. Inception, ResNet, and Inception‐ResNet were trained

for 200 epochs with a batch size of 512, and the models with the highest performance were saved. Inception consists of three inception modules,

and ResNet consists of one convolution and three identity blocks. The filter size was set to 1×3, and a 1×1 convolution for the bottleneck layer

was used before the 1×3 convolution. A dropout with the probability of 0.25 was used before the last fully connected layer. The optimizer of the

CNN model was RMSProp (Tieleman & Hinton, 2012), and Adadelta (Zeiler, 2012) was used for the remaining models.

The parameters of the machine learning method in the second experiment were set as follows: k was set to 3 in k‐nearest neighbours, multi-

layer perceptron had 15 hidden layers, support vector machine was set as the radial basis function kernel, DT was set with a maximum depth of

25, and RF was set with a maximum depth of 30. The maximum depths of DT and RF were chosen from 1 to 40.
4.3 | Results and analysis

4.3.1 | Performance comparison with deep learning methods

Table 5 shows the main results of the performance comparisons with other CNN methods in the test set. DenseNet‐BC with k = 128 and θ = 0.5

achieved the highest performance. DenseNet‐BC (k = 64) shows a remarkable performance with a fewer number of parameters than other models.

Our model demonstrates the highest performance of 79.6%, which is about 3 percentage points higher than that of ResNet, which is one of the

popular CNN models.
TABLE 5 Comparison with other CNN models

Model Parameter Accuracy (%) Precision (%) Recall (%) F1‐score (%)

CNN 2,242,370 75.9 80.7 90.7 85.4

Inception v3 2,430,818 76.5 80.4 92.5 86.0

ResNet 669,026 76.4 80.6 91.9 85.9

Inception‐ResNet v4 3,300,610 77.8 79.3 96.8 87.2

DenseNet‐BC (k = 64) 508,674 79.3 81.8 94.5 87.4

DenseNet‐BC (k = 128) 2,117,058 79.6 81.2 96.2 88.0
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We compared the cross‐entropy and accuracy of the validation set for CNN, Inception, ResNet, and DenseNet to verify if overfitting occurs. In

other CNN models except for DenseNet, the loss increased during training, but the loss of DenseNet decreased and accuracy steadily increased.

Figure 3 shows the cross‐entropy and accuracy with respect to the number of epochs for the four models.
4.3.2 | Performance comparison with other methods

We performed a fivefold cross‐validation using the model that showed the highest performance. The deep learning methods show significantly

higher performances than the conventional machine learning ones. Among the machine learning methods, tree‐based methods such as RF and

DT achieved high performance. Figure 4 shows the performance comparison for the fivefold cross‐validation.

We performed a paired t test to demonstrate the usefulness of the proposed method. Table 6 shows the paired t‐test results for the accuracy

of DenseNet and the different classifiers in the fivefold cross‐validation. In all the tests, DenseNet showed statistically significant differences at

the significance level of 0.01.
4.3.3 | Analysis of misclassification cases

Table 7 shows the confusion matrix of DenseNet. Our model well classified the repaid borrowers, but not the nonrepaid borrowers. This may have

occurred because there were fewer cases in which the repayment is not completed in the social lending dataset used.

Emekter, Tu, Jirasakuldech, and Lu (2015) presented the critical features in the repayment prediction model using the Lending Club dataset:

interest rate, home ownership, revolving line utilized, total funded, etc. We compared the well‐classified and misclassified data in the confusion

matrix with respect to these features. Figure 5 shows the distribution of sample data as follows: The top row of Figure 5 shows the well‐classified

data (TP and TN), whereas the bottom row shows the misclassified data (FP and FN). The distributions of the misclassified and well‐classified data

are totally reverse.
FIGURE 3 Graph of cross‐entropy and accuracy with respect to the number of epochs for the four models

FIGURE 4 Comparison of accuracy from the fivefold cross‐validation



TABLE 7 Confusion matrix of the proposed model

Predicted\true Fully paid Charged off

Fully paid 32,395 (TP) 7,516 (FP)

Charged off 1,295 (FN) 1,939 (TN)

TABLE 6 Paired t‐test results for comparison of accuracy

Index Model Mean (±SD) t P value

1 MLP 0.675 (±0.241) 60.94 <0.001***

2 SVM 0.574 (±0.337) 99.71 <0.001***

3 k‐NN 0.623 (±0.162) 113.49 <0.001***

4 Decision tree 0.725 (±0.576) 23.85 <0.001***

5 Random forest 0.744 (±0.211) 34.87 <0.001***

6 CNN 0.766 (±0.958) 6.29 0.002***

7 Inception 0.775 (±0.473) 6.85 0.001***

8 ResNet 0.767 (±0.580) 9.94 <0.001***

9 Inception‐ResNet 0.771 (±0.469) 8.25 0.001***

10 DenseNet 0.791 (±0.198) ‐ ‐

*p < 0.05.**p < 0.01. ***p < 0.001
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4.4 | Discussion

Various features of P2P social lending are related to the borrowers' ability to repay (Ye, Dong, & Ma, 2018). Many feature extraction and feature

selection studies have been conducted for the repayment prediction owing to the influence of the features used in the repayment prediction on

the classification performance. Although the proposed method achieves high performance by automatically extracting powerful and diverse fea-

tures, some constraints still exist. We consider two aspects of P2P lending and the model.
FIGURE 5 Comparison of distribution from classified samples



10 of 12 KIM AND CHO
First, diverse models extract different features according to the parameters. It is possible to design a classifier for a better repayment prediction

by combining diverse classifiers that can extract different features. Hence, it is necessary to verify which features have a significant impact on

which structure. However, it is difficult to understand the internal operation of models accurately.

Second, P2P social lending data have a class imbalance problem. We presented the F1‐score as a measure to address this problem, but we could

not solve it completely. For data with class imbalances, many researchers changed the training data by oversampling, undersampling, or adjusting the

class weights in the algorithm. Hence, a robust model is required to extract discriminative features efficiently from data with class imbalances.
5 | CONCLUSIONS

In this study, we proposed a structure of DenseNet for predicting repayment in social lending. DenseNet maintains low‐ and high‐level semantic

information of lending data with dense connectivity and automatically extracts relevant and powerful features. In the experiments with the Lend-

ing Club dataset, we demonstrated that the proposed DenseNet model achieved the highest performance without overfitting compared with

CNN, Inception, and ResNet, which are the most advanced CNN models. The analysis of misclassified instances verified the extracted feature.

Our model was very effective in predicting repayment; thus, our proposed model can help classify the loan status of the borrower.

Because P2P social lending is traded online, one can collect a variety of information about borrowers. For example, it is possible to obtain social

network data from a borrower's Facebook or Twitter account. This may have a significant potential for prediction models that are designed by com-

bining loan information from borrowers with additional information from social networks. P2P social lending data also account for more than half of

the data whose repayment has not expired. We expect that using this data to design a repayment prediction model will achieve good performance.

P2P lending platforms are increasing around the world. In addition to the Lending Club in the United States, it also provides available data on certain

lending platforms. The representative social lending platforms are Prosper, Kiva, and Zidisha. They operate differently and provide data with different

attributes. Unlike Lending Club, Kiva and Zidisha are nonprofit systems that do not charge interest and lend small amounts of money. We need to

consider experiments with other social lending datasets to evaluate the generalization ability. We assume that borrowers using each platform will have

discriminative features, and ourmodel expects to extract these features automatically, which constitutes the future work to be addressed. In the future,

we will also study an automatic deep learning system that extracts features from loan application in real‐time transactions and predicts defaults.
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APPENDIX A
TABLE A1 Comparison of performance by hyperparameters in the validation set

Structure Growth rate Compression Accuracy (%) Precision (%) Recall (%) F1‐score (%)

DenseNet‐B 32 0.25 73.3 85.1 80.2 82.5

0.5 74.8 84.3 83.5 83.9

0.75 73.8 84.9 81.2 83.0

64 0.25 69.7 86.3 73.1 79.2

0.5 70.7 86.1 74.9 80.1

0.75 73.1 85.5 79.3 82.3

128 0.25 75.4 84.3 84.5 84.4

0.5 75.9 84.7 84.8 84.7

0.75 75.0 84.5 83.5 84.0

DenseNet‐C 32 0.25 74.9 84.4 83.6 84.0

0.5 75.0 84.3 83.9 84.1

0.75 71.7 85.9 76.6 81.0

64 0.25 72.9 85.3 79.1 82.1

0.5 67.2 87.2 68.2 76.6

0.75 72.9 85.1 79.3 82.1

128 0.25 73.9 84.9 81.3 83.0

0.5 75.8 83.7 86.0 84.8

0.75 69.9 86.4 73.2 79.3

DenseNet‐BC 32 0.25 78.8 79.1 99.0 88.0

0.5 78.7 82.1 93.1 87.2

0.75 78.5 80.6 95.5 87.4

64 0.25 78.8 79.9 97.5 87.8

0.5 79.3 83.6 91.5 87.4

0.75 79.2 81.5 95.1 87.7

128 0.25 79.0 79.6 98.5 88.0

0.5 79.6 82.4 94.1 87.9

0.75 79.0 79.9 97.8 87.9
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