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Fingerprint classification using one-vs-all support vector machines
dynamically ordered with naïve Bayes classifiers
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Abstract

Fingerprint classification reduces the number of possible matches in automated fingerprint identification systems by categorizing fingerprints
into predefined classes. Support vector machines (SVMs) are widely used in pattern classification and have produced high accuracy when
performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel
method in which the SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with naïve Bayes classifiers. This is
necessary to break the ties that frequently occur when working with multi-class classification systems that use OVA SVMs. More specifically, it
uses representative fingerprint features as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and naïve Bayes classifiers.
The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for five-class classification
with the statistical significance. The results show the benefits of integrating different fingerprint features as well as the usefulness of the
proposed method in multi-class fingerprint classification.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fingerprint classification is an important part of automatic
fingerprint identification systems (AFIS). Classification is nec-
essary to reduce the number of one-to-one comparisons per-
formed when executing a fingerprint query [1,2]. According to
the Henry system, fingerprints can be partitioned into several
classes including whorl, left loop, right loop, arch and tented
arch [3].

Since the Henry system categorizes fingerprints by relative
position and number of core and delta points in the print, many
researchers have tried to extract singular points in the flow
of the ridges [4]. Karu and Jain [5] proposed a heuristic al-
gorithm with singularities, Nyongesa et al. [2] used the rela-
tive positions of the cores and deltas while Zhang and Yan [6]
used singularities and pseudo ridges to classify fingerprints.
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Although singularities can lead to vague classification, it is
hard to obtain high accuracy when the quality of the fingerprint
images is low [6,7].

In order to obtain higher accuracy, various features, such as
the FingerCode, ridge distributions and directional images, have
also been actively investigated. Jain et al. [8] proposed the Fin-
gerCode; a method that uses a Gabor filter to extract directional
ridge flow, and Park [9] used an orientation filtered by a fast
Fourier transform. Chong et al. [10] employed both a geometric
grouping and a global geometric shape analysis of fingerprint
ridges, while Cappelli et al. [3] proposed a directional image
that models fingerprints with a graph. Nagaty [7] extracted
a string of symbols using block directional images of finger-
prints, while Chang and Fan [11] proposed a ridge distribution
model consisting of a combination of 10 basic ridge patterns
with different ridge distribution sequences. Since there is more
information than that contained in simple singularities, finger-
print classification is more accurate when using these features.

There have been other attempts to integrate features and
methods in order to produce a robust fingerprint classifier
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Fig. 1. Flow diagram of the FingerCode feature vector [8].

[4,12]. Senior used hidden Markov models and decision trees
to recognize ridge structures of prints [4], while Yao et al.
[12] combined flat and structured features using recursive neu-
ral networks and support vector machines (SVMs). When sev-
eral types of features and methods are combined, fingerprint
classification appears to be more accurate and reliable, espe-
cially when working with fingerprints that contain high levels
of noise.

This paper proposes a novel fingerprint classification ap-
proach integrating naïve Bayes (NB) classifiers and SVMs that
use different fingerprint features. For highly accurate classi-
fication, SVMs with FingerCodes are generated based on the
OVA scheme that shows good performance for multi-class
classification using binary classifiers in the literature [13],
while the NBs (with singularities), which provide confident
and understandable class probabilities, dynamically organize
them according to the probabilities. Since it is hard to deter-
mine the class of some ambiguous fingerprints, OVA SVMs are
sequentially evaluated by the probability of the classes from
the NB.

The proposed method has been validated on the NIST-4
database [14] with three series of experiments. In the first
experiment, the NB with singularities achieved an accu-
racy of 85.4% without rejection. In the second experiment,
SVMs with FingerCodes were used with the OVA scheme,
and this combination achieved an accuracy of 90.1% with
1.8% rejection. Finally, the proposed method, which inte-
grates NBs and SVMs, produced an accuracy of 90.8% with
1.8% rejection. This result indicates the benefits of integrat-
ing different fingerprint features, and it also demonstrates the
usefulness of combining NBs and SVMs. The experiments
were all performed using discrete, Henry classification, but it
is possible to extend the method to continuous classification
as well.

2. Using SVMs with FingerCodes for fingerprint
classification

2.1. The FingerCode

The FingerCode, proposed by Jain [8], is a representative
fingerprint feature extracted from the NIST-4 database. An al-
gorithm sets a registration point in a fingerprint image and tes-

Table 1
Kernel functions of SVMs

Linear Polynomial Gaussian Sigmoid

(x · xi) (x · xi + �)d exp
(
− ‖x−xi‖2

2�2

)
tanh (x · xi + �)

sellates it into 48 sectors. The Gabor filter is then applied in
four directions (0◦, 45◦, 90◦, and 135◦) so as to accentuate the
ridge parallel to each direction. Ridges that are not parallel will
appear blurred, as shown in Fig. 1.

Standard deviations are computed on 48 sectors for each of
the four filtered images to generate the 192-dimensional fea-
ture vector called the FingerCode. Jain et al. [8] achieved ac-
curacy of 90% with 1.8% rejection using the k nearest neigh-
bors and neural networks methods with the FingerCode, while
Yao et al. [12] obtained accuracy of 90% with 1.8% rejec-
tion with SVMs of the error-correcting code scheme using
both the FingerCode and recursive neural networks-extracted
features.

2.2. Using SVMs for fingerprint classification

SVMs, well researched in statistical learning theory, have
been actively investigated in pattern classification and regres-
sion [15,16]. SVMs map an input sample to a high dimensional
feature space and try to find an optimal hyperplane that mini-
mizes the recognition error for the training data using the non-
linear transformation function [16].

X : x = (x1, . . . , xn) → F : �(x) = (�1(x), . . . , �n(x)). (1)

Let n be the number of training samples. For the sample xi

with the class-label ci ∈ {1, −1}, the SVM calculates

f (x) =
n∑

i=1

�iciK(x, xi) + b,

K(x, xi) = �(x) · �(xi). (2)

Coefficient �i in Eq. (2) is non-zero when xi is a support vector
that composes the hyperplane; otherwise it is zero. The kernel
function K(x, xi) can be easily computed by an inner product
of the non-linear mapping function. Table 1 shows some rep-
resentative kernel functions, including the linear, polynomial,
Gaussian, and sigmoid functions.
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Since SVMs are basically binary classifiers, a decomposition
strategy for multi-class classification, such as the one-vs-all,
pairwise or complete-code methods, is required [16,17].

(1) The one-vs-all method: M (no. of classes) SVMs are
trained, where each SVM classifies samples into cor-
responding classes against all the others. The decision
function fj (x) of the j th SVM replaces ci of Eq. (2) with
ti as follows:

ti =
{+1 if ci = j,

−1 if ci �= j.
(3)

(2) The pairwise method: An SVM manages a pair of classes,
where the SVMs for all pairs of classes (MC2 = M(M −
1)/2) are constructed. This strategy is faster than the others,
because it uses only a small portion of the training data. For
j, k ={1, . . . , M} and j �= k, the decision function fj,k(x)

is defined by replacing ci of Eq. (2) with ti as follows:

ti =
{+1 if ci = j,

−1 if ci = k.
(4)

(3) The complete-code method: The SVMs for all binary com-
binations of the classes are constructed, while the five-
class classification requires both one-vs-all and two-vs-all
methods. When whole classes are divided into two groups
{j} and {k}, the decision function fj,k(x) is obtained by
changing ci of Eq. (2) by ti as follows:

ti =
{+1 if ci ∈ {j},

−1 if ci ∈ {k}. (5)

After constructing the SVMs, a fusion method is required to
combine the multiple outputs of the SVMs. Popular methods
for combining multiple SVMs include majority voting, winner-
takes-all, error-correcting codes (ECCs), behavior knowledge
space (BKS) and decision templates.

(1) The majority voting method: For a sample, this method
simply counts the votes received from the individual clas-
sifiers and selects the class with the largest number of votes
[18]. An analytic justification may be given by the well-
known Condorcet’s theorem [19], while a theoretical study
can be found in [20,21]. Although it is simple to achieve
good performance, this method cannot handle cases where
classifiers tie.

(2) The winner-takes-all method: In order to resolve problems
caused by majority voting, this method classifies a sample
into the class that receives the highest value among the L
classifiers for the M-class problem. This is often known as
maximum where indi,j (x) is an indicator function with 1
if the label i is the positive class of the jth SVM, −1 if it
is the negative class, and 0 if it is otherwise.

c = arg max
i=1,...,M

L∑
j=1

indi,j (x)dj (x). (6)

(3) The ECC method: This method generates a coding matrix
E ∈ {−1, 0, 1}M×L where M and L are the number of
classes and classifiers, respectively [22,23]. Ei,j represents
an entry in the ith row and jth column of E. (Ei,j = −1 or
1) indicates that the points in class i are regarded as neg-
ative or positive examples when training the jth classifier.
If Ei,j = 0, class i is not used when the jth classifier is
trained. A test point is classified into the class whose row
in the coding matrix has the minimum distance to the vec-
tor of the outputs of the classifiers. Eq. (7) shows the class
decision function of ECCs that use the Hamming distance:

c = arg min
i=1,...,M

L∑
j=1

1 − sign(Ei,j dj (x))

2
. (7)

(4) The BKS method: In this method, possible combinations
of the outputs of the classifiers are stored in the BKS-
table T ∈ {−1, 1}ML×L, for the M-class problem with
L classifiers. Each entry in the T contains a single class
label (most frequently encountered amongst the samples
of the training data in this cell) or no label (no sam-
ple of the training data has the respective combination of
class labels). In tests, a new sample can be classified into
the label of entry with the same outputs of the classi-
fiers [24]. It fails to classify when an output pattern is not
found in T.

(5) The decision templates method: Single-DTs generate de-
cision templates of each class by averaging the decision
profiles (DPs) for the training samples. For the M-class
problem with L classifiers, the DP(xi) of the ith sample is

DP(xi) =
⎡
⎣ d1,1(xi) . . . d1,M(xi)

... dy,z(xi)
...

dL,1(xi) . . . dL,M(xi)

⎤
⎦ , (8)

where dy,z(xi) is the degree of support given by the yth
classifier for the sample xi of the class z. When DPs are
generated from the training data, Eq. (9) estimates the de-
cision template DT c of the class c. Indc(xi) has a value of
1 if xi’s class is c, otherwise it has a value of 0 [25,26].

DT c =
⎡
⎣ dtc(1, 1) . . . dtc(1, M)

... dtc(y, z)
...

dtc(L, 1) . . . dtc(L, M)

⎤
⎦ ,

dtc(y, z) =
∑n

i=1indc(xi)dy,z(xi)∑n
i=1indc(xi)

. (9)

In the test stage, the equation computes the distance between
the DP of a new sample and the decision templates of each
class. The class-label is defined as the class that contains the
most similar decision templates. Kuncheva experimented with
single-DTs using 11 similarity comparison measures including
the Hamming (HM) and Euclidean (EU) distances and achieved
a higher classification accuracy than other fusion methods such
as the majority voting and BKS methods [25]. Even though
there are various methods for combining multiple SVMs, it is
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Fig. 2. Procedure of the proposed method.

still hard to manage cases of ties and rejections. Also, conven-
tional fusion methods combine multiple classifiers statically so
as to be limited in classifying ambiguous fingerprints.

3. A dynamic fingerprint classifier

Contrary to static classification, in which classifiers are not
adaptively changed for an input sample, we propose a dynamic
fingerprint classifier that not only uses various fingerprint fea-
tures (singularity, pseudo ridges and the FingerCode), but also
addresses the ambiguity of the OVA SVMs. It is possible that
tie cases, which frequently occur when using OVA SVMs for
multi-class classification, might decrease classification perfor-
mance. The proposed method manages this possibility by orga-
nizing the OVA SVMs based on the subsumption architecture.
The subsumption architecture is a representative method used
to select a proper action when there are multiple actions acti-
vated [27], while the order of the models is determined by the
NB classifier in this paper.

The proposed method consists of the NB and the OVA SVMs
as shown in Fig. 2. The NB estimates the posterior probability
for the fingerprint classes prob = {pw, pl, pr , pa, pt } by using
singular points and pseudo ridges. The OVA SVMs classify
fingerprints by using the FingerCode as explained in Section 2,
where the margin of a sample o-svm={mW, mR, mL, mA, mT }
is produced. In order to manage ambiguity in cases of ties
and rejections, in this paper, the proposed method sequentially
selects the OVA SVMs. The evaluation order of the OVA SVMs
is determined by the posterior probability of each class that the
NB produces. The corresponding OVA SVM of a more probable
class takes precedence in the subsumption architecture over the
other OVA SVMs.

When a sample is inputted, the method first estimates the
probability of finding certain fingerprint classes by using the

NB classifier, and then organizes the OVA SVMs as the sub-
sumption architecture according to the probability. Finally, a
sample is evaluated sequentially until an OVA SVM is satis-
fied. When an OVA SVM is satisfied, the sample is classified
into the corresponding class of the OVA SVM, while it is clas-
sified into the class of the highest probability when no OVA
SVMs are satisfied. Fig. 3 shows the pseudo code for the pro-
posed method. Ordering the OVA SVMs properly for an input
sample produces dynamic classification.

In order to construct the NB classifier for ordering the OVA
SVMs, we adopt two representative features of fingerprints
called the singularity and the pseudo ridge. Singular points in
fingerprints are known as core and delta points, where the core
is the topmost point on the innermost recurving ridge and the
delta is the center of a triangular region where three different
direction flows meet [5,6]. The number and location of core
and delta points are used to classify fingerprints.

The Poincare index is a representative algorithm used to
detect singular points [1,6]. It computes cores and deltas
based on the orientation field of the fingerprint images. Since
singular points are usually found in the center of images,
some constraints (used in the NIST-4 database) are considered
as follows:

• Since the border of a 512×480 image contains a large back-
ground region, no singular point is allowed in the 40-pixel
wide strips along the border.

• No cores are allowed in the 80-pixel wide strips along the
border.

• Deltas are usually found near the bottom of images, so the
160-pixel strip from the top is neglected.

• If a core is less than 8 pixels away from the nearest delta,
this core-delta pair is removed.

• The maximum number of cores or deltas is two, and we select
the ones that are nearest to the center.
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Fig. 3. Pseudo code for probabilistically ordering the OVA SVMs.

Fig. 4. Singular points and pseudo ridges (� = core, � = delta, © = end of
the pseudo ridge).

The number of cores and deltas are denoted as NC and ND,
respectively. The nearest core to the center is denoted as C
(if there is no core, C represents the center of the image).
Fig. 4(a) shows an example with two cores where the lower
core is selected as C. D1 and D2 denote deltas in the order of
their locations.

Since this method often fails to correctly extract singular
points because of poorly qualified images, many researchers
use not only singularity but also additional features. For exam-
ple, Zhang et al. [6] proposed pseudo ridges to make up for
the weak points in singularity-based fingerprint classification.
Pseudo ridges consist of a predefined number (100 in this pa-
per) of points. A pseudo ridge is composed of 200 points based
on orientation in two opposite directions from the starting point
C. At first, orientation is estimated using the direction index in
the range of (0, 16), as shown in Fig. 5(a).

The dir is the index from the current point p, dirb is the
previous index, and dirn, the next tracing index, is calculated
as follows:

dirn =
{

dir, cos−1(
−−→
Vdirb · −−→

Vdir )

> cos−1(
−−→
Vdirb · −−−−−−−→

V(dir+8)%16),

(dir + 8)%16 otherwise.
(10)

If the direction is calculated, p is linked to a point correspond-
ing to the index shown in Fig. 5(b). Tracing continues from
the next point. If dp satisfies Eq. (12), the pseudo ridge is



J.-H. Hong et al. / Pattern Recognition 41 (2008) 662–671 667

Fig. 5. Direction index for the pseudo ridge.

Fig. 6. Relative position and distance between C and P: (a) Location value,
(b) distance value.

regarded as turn:

dp =
{

dir − dirb + 16, dir − dirb < − 8,

−dir + dirb + 16, dir − dirb > 8,

dir − dirb otherwise,
(11)

∣∣∣∣∣∣
n∑

p=0

dp

∣∣∣∣∣∣ > 15. (12)

Tracing the pseudo ridge is terminated if 100 iterations are
reached or if it might be regarded as turn. If the pseudo ridge
goes to the right-hand side, a fingerprint is classified as ‘left
loop’ (Fig. 5(b)), while it is categorized as ‘whorl’ if the pseudo
ridge is regarded as turn (Fig. 5(a)).

In order to use singular points and pseudo ridges in fin-
gerprint classification, locations and distances between C
(the core point in Fig. 6) and other points are parameterized.
The relative location L between C and a point P is discrete
as follows:

(1) Cy > Py :

L =
{

0, Cx > Px,

4, Cx �Px.
(13)

(2) Cy �Py :

L =
{1, Cx > Px and |Cy − Py | < 4.0|Cx − Px |,

2, |Cy − Py |�4.0|Cx − Px |,
3, Cx �Px.

(14)

Table 2
Features of the naïve Bayes classifier

Feature Definition State

NC , ND Number of core points and delta
points

0, 1, 2

D1L, D2L Location of delta point 0, 1, 2, 3, 4, Absent
R1L, R2L Location of the end point of the

pseudo ridge
0, 1, 2, 3, 4, turn

D1D , D2D Distance between C and delta
points

1, 2, 3, Absent

R1D , R2D Distance between C and the end
point of the pseudo ridge

1, 2, 3, turn

The distance D between them is computed as follows:

dis = |(Cx − Px)
2 + (Cy − Py)

2|, (15)

D =
{1, dis�10,

2, 10 < dis�20,

3 otherwise.
(16)

In this paper, the number of cores and deltas (NC, ND),
the location and distance between them (D1L, D1D, D2L,
D2D), and the location and distance between cores and the
end points of pseudo ridges (R1L, R1D, R2L, R2D) are used
for fingerprint classification using the NB classifier. It consists
of five mutually exclusive and exhaustive classes (W, R, L, A,
T ) and 10 features (NC, ND, D1L, D1D, D2L, D2D, R1L,
R1D, R2L, R2D), where each class is linked with all features
as shown in Table 2 and Fig. 2. The NB estimates the posterior
probability of each class given the observed attribute values for
an instance, and the class with the highest posterior probability
is finally selected [28].

In order to calculate the posterior probability, the classifier
must be defined by the marginal probability distribution of vari-
ables and by a set of conditional probability distributions of
each attribute Ai given each class cj [29]. These are estimated
from the training set of nT images. When Ai is the ith state
of the attribute A and count (Ai) is the frequency of cases in
which the attribute A appears with the ith state, priority proba-
bility P(Ai) is estimated as follows:

P(Ai) = count(Ai)

nT

. (17)

If A has a parent node B, conditional probability P(Ai |Bj ) is
calculated by the following equation:

P(Ai |Bj ) = count(Ai, Bj )

count(Bj )
. (18)

Bayes’ theorem yields the posterior probability of each class
given 10 features as evidence over a class C and F1 ∼ Fn:

P(C|F1, . . . , Fn) = P(C)P (F1, . . . , Fn|C)

P (F1, . . . , Fn)
. (19)

Since only the numerator of the fraction is interested in and
the denominator does not affect C, the posterior probability of
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Table 3
Comparison of the SVMs classifiers with different methods

Fusion methods One-vs-all Pairwise Complete-code

Winner-takes-all 90.1 87.7 90.0
ECCs (HM) 90.1 88.6 90.0
ECCs (EU) 90.1 88.6 90.0
BKS 88.8 89.4 89.3
DTs (HM) 89.6 87.6 89.6
DTs (EU) 89.8 88.3 89.5

a class might be expressed as follows with the independence
assumption among features:

P(C)P (F1, . . . , Fn|C) = P(C)P (F1|C)P (F2|C) . . . P (Fn|C)

= P(C)

n∏
i=1

P(Fi |C). (20)

Finally, the case is assigned to the class with the highest pos-
terior probability as follows:

arg max
c

P (C = c)

n∏
i=1

P(Fi = fi |C = c). (21)

4. Experimental results

4.1. Experimental environment

The NIST-4 database was used to verify the proposed method
[15]. This database consists of 4000 scanned images (at 512 ×
512 resolution) obtained from two impressions (F and S) of
2000 fingerprints. Fingerprints were equally distributed into
five classes, whorl (W), right loop (R), left loop (L), arch
(A) and tented arch (T ). Due to the ambiguity in fingerprint
images, 350 fingerprints (17.5%) were cross-referenced with
two classes. The first label was only considered in training the
SVMs and the NB while both labels were used in the test. In
the experiment, the fingerprints of the first impression were
used as the training set (F0001 ∼ F2000), and the other fin-
gerprints constructed the test set to follow the convention of
the previous studies in this area. The FingerCode proposed by
Jain [8] was used after normalization from −1 to 1, where
some rejected images were included in the training set (1.4%)
and the test set (1.85%). The LIBSVM package (available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm) provided the SVMs
[30] using the Gaussian kernel with �2 = 0.0625 (determined
according to Wu’s method [31]).

4.2. SVMs with FingerCodes

Several schemes for generating and combining multiple
SVMs were examined. Error-correcting codes and decision
templates with HM and EU distances were used and the re-
sult is shown in Table 3. Among several fusion methods, the
winner-takes-all method resulted in an accuracy of 90.1% with
the OVA SVMs. Since it is possible that the FingerCode was

Table 4
Confusion matrix of the OVA SVMs of winner-takes-all method

True class Assigned class

W R L A T

W 382 6 6 0 0
R 7 365 2 5 17
L 10 0 365 13 10
A 3 4 2 356 47
T 2 8 12 40 302

85
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88

89

90

91

SVMs

(Winner-takes-all)

A
c
c
u
ra

c
y
 (

%
)

Naive Bayes

classifier

Proposed

method

NB+SVMs

(Product)

Fig. 7. Comparison with other methods.

Table 5
Confusion matrix of the proposed method

True class Assigned class

W R L A T

W 373 10 10 0 0
R 4 374 0 6 15
L 5 0 377 8 9
A 0 6 4 365 40
T 1 8 15 39 295

rather more reliable than the singularities and pseudo codes,
most cases obtained higher performance than the NB. Table 4
shows the confusion matrix of the winner-takes-all method
with the OVA SVMs.

4.3. Dynamically ordered SVMs

The proposed method, which combines NBs and SVMs
dynamically, is aimed at classifying fingerprints by handling
more subtle discriminations. The major classification task was
performed by the SVMs, while the NB worked as an assistant
by ordering them (although the NB obtained lower accuracy
than the SVMs). It resulted in an accuracy of 90.8%, which
is higher than the others as shown in Fig. 7 and Table 3.
The confusion matrix is shown in Table 5. The combination

http://www.csie.ntu.edu.tw/cjlin/libsvm
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Fig. 8. A misclassified fingerprint by the OVA SVMs with the winner-takes-all method.

Table 6
Statistical significance analysis of the proposed method (five classes)

Fold no. BN SVMs PRO SUM Proposed method

1 0.835 0.873 0.817 0.878 0.896
2 0.858 0.937 0.901 0.916 0.944
3 0.822 0.906 0.865 0.865 0.916
4 0.85 0.904 0.838 0.906 0.916
5 0.858 0.916 0.832 0.891 0.919
6 0.83 0.891 0.817 0.883 0.911
7 0.85 0.921 0.865 0.891 0.926
8 0.86 0.924 0.873 0.911 0.939
9 0.863 0.916 0.87 0.903 0.929

10 0.829 0.911 0.875 0.885 0.921

Avg. 0.8455 0.9099 0.8553 0.8929 0.9217
F 31.57040384
p 1.52765E−12

classifier of the NB and the SVMs was also examined.
The probability and margin, obtained by the NB and the
SVMs, respectively, was multiplied to generate a final result.
The classifier produced an accuracy rate of 90.2%, which
is higher than that of the NB or the SVMs. This means

Table 7
Statistical significance analysis of the proposed method (four classes)

Fold no. BN SVMs PRO SUM Proposed method

1 0.881 0.929 0.871 0.919 0.934
2 0.886 0.97 0.926 0.947 0.972
3 0.873 0.949 0.896 0.914 0.949
4 0.891 0.947 0.883 0.941 0.952
5 0.898 0.964 0.868 0.931 0.957
6 0.883 0.939 0.868 0.934 0.944
7 0.893 0.957 0.896 0.931 0.957
8 0.906 0.957 0.903 0.957 0.962
9 0.901 0.954 0.911 0.936 0.962

10 0.885 0.947 0.911 0.934 0.947

Avg. 0.8897 0.9513 0.8933 0.9344 0.9536
F 52.08063313
p 2.53936E−16

that the combination of different fingerprint features might
complement each other and improve classification perfor-
mance. The proposed method produced a higher improve-
ment, since it managed the ambiguity of multiple SVMs
more effectively.
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Fig. 9. Five-class (left) and four-class (right) accuracy-rejection plots of the NIST-4 database.

An example in Fig. 8, which often occurs in the test dataset,
illustrates the usefulness of the proposed method. When the
winner-takes-all method was used to combine the OVA SVMs,
the fingerprint was classified as a tented arch. The proposed
method, however, adjusted the order of the SVMs dynamically
based on the probability obtained by the NB so as to correctly
classify it as an arch.

4.4. Significance evaluation

In order to show the statistical significance of the differences
between the performances of the methods, a one-way ANOVA
test was conducted for the results of 10-fold cross-validation for
five-class classification and four-class classification. As shown
in Tables 6 (five classes) and 7 (four classes), the proposed
method obtained statistically significant higher accuracy than
the others including OVA SVMs of the winner-takes-all scheme
(F = 31.57, p < 0.05 and F = 52.08, p < 0.05, respectively).

4.5. Comparison with related works

We have compared the proposed method with other methods
that have previously been published. Several points are plotted
in Fig. 9 along with the curve of possible points for the pro-
posed method here and the methods of Jain et al. [8], Yao et
al. [12], Park [9], and Zhang and Yan [6]. For each method,
the accuracy of the classifier is shown with the corresponding
rejection rate. As shown in Fig. 9, the proposed method yields
competitive performance against the others in both classifica-
tion tasks, especially for low rejection rate.

Zhang and Yan’s [6] method, based on singular points and
pseudo ridges, works fast, but the results are weak when noise is
included in the fingerprint images. The proposed method used
the FingerCode as well as structural features so as to be robust
against noise. Furthermore, comparing the proposed method to
Jain’s work, singularity information helps improve the classifi-

cation performance. Singular points and pseudo ridges, which
are used in the proposed method, are easier to extract than the
relational graph used in Yao’s work, even though the classi-
fication results are similar to each other [12]. Parks’ method
uses 11,025-dimensional data that require much computation
for highly accurate classification, while the proposed method
uses only 202 features extracted from fingerprints [9].

5. Conclusions

In this paper we proposed a novel fingerprint classification
method effectively integrating NBs and OVA SVMs, which pro-
duced better accuracy than previously reported in the literature
contained in the NIST-4 database. Several popular fingerprint
features such as singularities, pseudo codes and the FingerCode
were used in the proposed method, and the combination of
methods described here produced better results (90.8% for the
five-class classification problem and 94.9% for the four-class
classification problem with 1.8% rejection during the feature
extraction phase of the FingerCode) than any of the compo-
nent classifiers. The proposed method also breaks the tie that
often occurs in multi-class classification by ordering the OVA
SVMs based on the probability of classes. As future works, we
will apply the proposed method of applying binary classifiers
to other multi-class classification problems and exploit other
methods instead of the NBs which might be more suitable for
ordering OVA SVMs.
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