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Abstract- The problem of automatically adapting the 
behavior of a mobile robot in a changing environment is 
recognized as a very difficult task. Towards a promising 
approach to this problem, we have developed a genetic 
fuzzy controller for a mobile robot, and showed the po- 
tential by applying to a simulated robot called Khep- 
era. The robot gets input from eight infrared sensors 
and operates two motors according to the fuzzy infer- 
ence based on the sensory input. This paper attempts to 
analyze the adaptive behaviors of the controller by us- 
ing automata, which indicates the emergence of several 
strategies to make the robot to navigate the complex 
space without bumping against walls and obstacles. 

I. INTRODUCTION 

It is difficult to program an autonomous robot so 
that it reliably acts in a dynamic environment. This 
is due to such problems as missing necessary informa- 
tion at design stage, the unpredictability of the envi- 
ronment dynamics, and the inherent noise of the sen- 
sors and actuators 171. Clearly, an autonomous robot 
that can acquire knowledge by interaction with the en- 
vironment and subsequently adapt and change its be- 
havior in the run time could greatly simplify the work 
of its designer. As a promising approach to this learn- 
ing autonomous robot, the behavior-based robotics has 
recently appeared [2], [6]. 

One of the key points of this approach is not to give 
the robot information about the environment but to let 
the robot find the knowledge by itself. With this ap- 
proach, a number of researchers have successfully em- 
ployed an evolutionary procedure to develop the control 
system of simulated robots [l], [3], [9 ] ,  [13]. The rich 
variety of structures that have appeared during evolu- 
tion and the large number of evolved behaviors have 
empirically demonstrated the power and generality of 
the evolutionary algorithms. However, this approach 
suffers from the difficulty of analyzing the control sys- 
tem evolved, which prohibits the designer from fully 
exploiting domain knowledge to design the control sys- 
tem by an evolutionary approach. 

To work out this problem, we proposed a fuzzy sys- 
tem for a behavior-based robot, and presented an evo- 
lutionary approach to determine the parameters in the 
fuzzy controller [4]. In this paper, we attempt to an- 
alyze the genetic fuzzy controller developed to control 
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Fig. 1. Khepera robot and the simulated representation. 

the simulated robot called Khepera. We also show that 
the adaptive behaviors result from the interaction of 
several primitive low-level strategies acquired through 
the evolutionary process. 

11. AUTONOMOUS ROBOT 
For the simulation, we have used the Khepera robot 

that is circular, compact and robust as shown in Fig. 1. 
This is a miniature robot that has diameter of 55mm, 
height of 30mm, and weight of 709. The robot is sup- 
ported by two wheels and two small Teflon balls placed 
under its platform. The wheels are controlled by two 
DC motors with an incremental encoder (12 pulses per 
mm of robot advancement) and can rotate in both di- 
rections. The geometrical shape and the motor layout 
of Khepera make the robot t o  navigate in sophisticated 
environment even when its control system is immature. 

It is provided with eight infrared proximity sensors 
placed around its body which are based on emission 
and reception of infrared light. Each receptor can mea- 
sure both the ambient infrared light and the reflected 
infrared light emitted by the robot itself. Several new 
single sensors and complete modules, such as a stereo- 
vision module and a gripper module, can be easily 
added, due to the hardware and software modularity 
of the system. 

Dedicated to Khepera, the simulated mobile robot 
[12] includes eight infrared sensors allowing it to detect 
by reflection (small rectangles) the proximity of objects 
in front of it, behind it, and to the right and left sides 
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of it. Each sensor returns a value ranging between 0 
and 1023 represented in gradual color levels. 0 means 
that no object is perceived whereas 1023 means that an 
object is very close to the sensor (almost touching the 
sensor). Intermediate values may give an approximate 
idea of the distance between the sensor and the object. 
Each motor can take a speed value ranging between 
-10 and +lo. The size of arrows on the motors in Fig. 
1 indicates the amount of speed. 

8 

111. GENETIC FUZZY SYSTEM 

In order to operate the robot introduced at the pre- 
vious section, we have developed a fuzzy controller in 
which genetic algorithm determines the internal param- 
eters. A fuzzy inference system provides a computing 
framework based on the concepts of fuzzy sets, fuzzy 
if-then rules, and fuzzy reasoning. The basic structure 
consists of a fuzzy rulebase, a reasoning mechanism, 
and a defuzzification. A fuzzy rulebase is a set of fuzzy 
rules that are expressed as follows: 

(Rule 1) If (21 is A:) and ... and (2, is A;) ,  

(Rule 2) If (21 is A;)  and ... and (z, is A:), 
then y is B1 

then y is B2 
... 

(Rule m) If (z1 is AY) and ... and (z, is AT) ,  
then u is B” 

where xj (1 5 j 5 n) are input variables, y is output 
variable, and A; and Bi (1 5 i 5 m) are fuzzy sets 
which are characterized by the membership functions. 
In our simulation, the numbers of input and output 
variables are eight and two, respectively. 

In order to facilitate the controller of Khepera robot, 
we use the following four fuzzy sets for the input and 
output parameters: 

Input : 8 values from infrared sensors (0 - 1023) 
Fuzzy set : I = {VF, F, C, VC} 

VF (Very Far) 
F (Far) 
C (Close) 
VC (Very Close) 

Output : 2 values from motors (-10 N + I O )  
Fuzzy set : 0 = {BH, B, F, FH} 

BH (Backward High) 
B (Backward) 
F (Forward) 
FH (Forward High) 

Triangular shapes specify the membership function. A 
parameter value divides the range (0 - 1023 for input 
and -10 - +10 for output) by 10 equidistance seg- 
ments. Fig. 2 shows the membership functions used 
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Fig. 2. Membership functions for (a) input; (b) output. 

for input and output values, respectively. 
For fuzzy inference is used correlation minimum 

method, which truncates the consequent fuzzy region 
at the truth of the premise [lo]. The inference value, 
pi, of the ith rule is defined as follows. 

pi = min(Ii0 (zo), Iil (XI), . . ’ 7  Iij (zj)), 

j = no. of input variables (1) 
Finally, centroid defuzzification method is adopted to 
yield the expected value, yt, of the solution fuzzy re- 
gion, as follows. 

In order to robustly determine the shape and num- 
ber of membership functions in fuzzy rules, genetic al- 
gorithm has been utilized. This approach reduces the 
burden of human operators to decide the structure of 
fuzzy rules. Genetic algorithm (GA) is considered as 
an effective method for optimization [8], and several 
hybrid methods with fuzzy logic have been recently 
proposed [ 5 ] ,  Ell]. Fig. 3 shows the overall diagram 
of the proposed system. The system parameters in the 
fuzzy system are represented as a gene, and the perfor- 
mance with the Khepera simulator decides whether it 
can produce offsprings with the genetic operators. In 
the figure, four genes of number 1, 2, 4 and 6 are se- 
lected as candidates for the next generation, and the 
crossover is applied to them. 

To get a success in the application of genetic algo- 
rithm, it is quite important to devise a gene coding 
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Fig. 3. Schematic diagram of the genetic fuzzy system. 
Fig. 5. Fitness change. 
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Fig. 4. Gene code for encoding the fuzzy system. 

scheme appropriate to the problem. For our problem, 
we should incorporate the input and output member- 
ship functions and the rules as a gene code as shown in 
Fig. 4 which encodes the eight input parameters, two 
output parameters and maximum 10 rules. For details 
on the gene encoding scheme, refer to the recent publi- 
cation made by the authors [4]. In this paper, we have 
used the same encoding method, and tried to  analyze 
the adaptive behaviors of the robot evolved. 

Another important issue in the application of genetic 
algorithm is to determine a proper fitness measure for 
the problem. In this paper we make the fitness function 
to decrease as the robot bumps against the walls, and 
to increase as it moves farther from the start point. 
In addition, a couple of factors are included to induce 
the compact fuzzy system by preferring to the smaller 
number of rules and membership functions. The fitness 
function is as follows. 

fitness = Q x no. of collisions (3) 
+ ,B x distance moved 
+ y x no. of rules 
+ 6 x no. of membership functions 
+ E x no. of check points reached, 

where a = -3, p = 1, y = -100,d = -10, and E = 500. 

The coefficients might be determined by another op- 
timization technique, but in this paper we have just 
selected them by trial-and-error. The fitness would in- 
crease as the robot goes farther from the start point 
while passing by more check points. The fitness would 
decrease as the robot collides with the walls or the num- 
bers of rules and membership functions get larger. In 
order to expedite the evolution, we put several check 
points along with the pathways which will be removed 
later. 

IV. SIMULATION 
The Khepera simulator was written in C++ [l2], and 

the simulation was conducted in SUN Sparc 10 work- 
station. We initialized 200 chromosomes at random, 
each of which was developed to a fuzzy controller for 
the robot. Each robot operates within 5000 sensor sam- 
pling time, and produces the performance value accord- 
ing to the fitness function. 

Fig. 5 shows the best and average fitness changes 
in the course of simulation. As the figure depicts, the 
performance increases gradually as the generation goes, 
and a robot navigated successfully at  the given environ- 
ment has been obtained at  less than 100 generations. It 
can be seen that the fitness is radically increased at  the 
beginning stage, but there is nearly no change after 90 
generations. Around the 67th generation the best indi- 
viduals already perform a near optimal behavior. They 
navigate so smoothly that they do not bump into walls 
and corners, and maintain a straight trajectory when 
possible. 

Fig. 6 shows the trajectories that the robot has made 
during the simulation. These results are highly reliable 
and have been replicated in many runs of the experi- 
ment. In the beginning of the evolution the individuals 
evolved a frontal direction of motion, corresponding to 
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Fig. 6. Trajectories of the robot. 

the side where more sensors are available. Those indi- 
viduals that moved in the other direction got stuck in 
a corner without being able to detect it, and soon dis- 
appeared from the population. The controller for this 
robot consists of only seven effective rules, which are 
generated through the evolutionary process as follows. 

(Rule 1) If (22 = C) and (55 = V F )  and (27 = V C T  
then (yo = B H )  and (y1 = B)  

(Rule 2) If (24 = V F )  
then (yo = F H )  and (yl = F )  

(Rule 3) If (21 = V C )  and (22 = F )  and 
(24  = C) and (27 = V C )  

then (yo = B H )  and (y1 = B) 
(Rule 4) If (22 = F )  and (q = F )  and (26 = V C )  

then (yo = F )  and (y1 = F H )  
(Rule 5 )  If ( 2 4  = V C )  

then (yo = B H )  and (yl = F )  
(Rule 6 )  If (Q = V F )  and ( 2 4  = F )  and (26 = V C )  

then (yo = F )  and (y1 = F H )  
(Rule 7 )  If (20 = V F )  and ( 2 4  = F )  and (25 = C) 

then (yo = B H )  and ( y ~  = F )  

Even though we did not give any hints to the system, 
several effective rules to control the mobile robot ap- 
propriately at a number of different cases have emerged 
through the evolution. The overall behavioral model 
can be depicted as Fig. 7. The rule 2 triggers the state 
of “Obstacle Avoidance,” the rules 2 and 7 coopera- 
tively induces the state of “Wall Following,” and the 
rule 5 activates the state of “Impact Avoidance.” This 
result dictates that the evolutionary approach is quite 
useful to design a flexible and efficient fuzzy systems to 
control mobile robot. 

For instance, Fig. 8 shows the snapshots of the robot 
that escapes from the closed corridor. When the robot 
arrives at the closed corridor the internal state of the 

Fig. 7. Behavior model for the robot evolved. 

Fig. 8. Snapshots of the robot escaping from the closed corridor. 

robot changes to “Impact Avoidance” which is gov- 
erned by rule 5 ,  while the usual “Wall Following” state 
is activated by rules 2 and 7. Fig. 9(a) depicts the 
speed of the two motors with respect to the activation 
levels of rule 5. As can be seen from this figure, the 
robot turns left as soon as the rule 5 is activated. Fig. 
9(b), (c) and (d) show the changes of the sensor values, 
the activation levels of the rules, and the speed of left 
and right motors, respectively. 

V. CONCLUDING REMARKS 

In this paper, we have presented a fuzzy system to 
control a mobile robot, and utilized genetic algorithm 
to optimize the internal parameters in the system. A 
successful controller generated consists of only seven 
effective rules, which shows the evolution finds out the 
optimal set of rules to control the robot. An analysis 
of the simulation resuIts dictates that the evoIutionary 
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approach is quite useful t o  design a flexible and efficient 
fuzzy systems to control mobile robot. 
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