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ABSTRACT 

We propose a method to reveal the features used by 
humans in the classification of human movement and apply it 
to the case of classifying arm movements as angry or happy. 
The method begins with psychophysical experiments 
investigating the human classification of point-light 
movements. Then by comparing the results from these 
perception experiments with the results of principal component 
decomposition, we can find a particular feature component that 
has the highest correlation with human perception. In order to 
verify the component, we reconstruct movements by using 
either the first two PCA components alone as well as those two 
components and the feature that correlates highly with human 
perception. Finally, we used a Parzen window to test the 
recognition effectiveness of these reconstructed movements. 

 
1. INTRODUCTION 

Humans are adept at gleaning a variety of social signals 
from the visual analysis of body movement.  Obtaining an 
explanation of how this can be achieved presents a challenge to 
researchers in both visual cognition and computer vision.  
There has been substantial progress in related problems 
associated with the processing of emotion from faces, but there 
is much less known about understanding affect from body 
movement.  In this research we investigate techniques for 
combining tools of human psychophysics and pattern 
recognition to find features that can account for human 
movement classification.  In particular, we examine the human 
classification task of labelling arm movements as happy or 
angry. This is an important area of investigation in the 
recognition of affect from human movement since the stimulus 
features underlying this classification are poorly understood 
[1]. 

The recognition of affect from body movement can be 
thought of as a specific instance of movement style recognition 
[2].  Recently Davis & Gao [3] proposed an expressive three-
mode principal components model to recognize the styles of 

human actions. They used principal component analysis (PCA) 
to reduce data dimensionality and trained a set of expressive 
weights to recognize various styles (e.g. carrying load, gender, 
walking pace) of human walking. Although they did not work 
on the classification of human emotions, related work in 
computer animation has addressed this issue.  For example, a 
Fourier-based approach with basic and additional factors (walk; 
brisk) has been employed [4] to generate human motion with 
different emotional properties (e.g. happy walk). Amaya et al. 
[5] applied digital signal processing techniques to generate an 
emotional motion from a neutral motion. Bruderlin and 
Williams [6] used multi-target interpolation with dynamic time-
warping to blend between motions. But these methods were 
restricted to transforming a neutral movement to an emotional 
one. 

Pollick et al. [1] looked at the human classification of 
emotion from motion using the affective human arm movement 
data of Amaya et al [5].  By using multi-dimensional scaling 
they found a two-dimensional psychological space of the 
human representation of affect from motion.  They found that 
the first dimension of this space could be thought of as 
activation and correlated highly with movement kinematics.   
Results suggested that the second dimension corresponded to 
valence (eg happy versus angry) but a stimulus property of the 
movements that reliably co-varied with dimension 2 could not 
be found. 

In this paper, we present a computational solution to finding 
the features that drives the human perception of emotions and 
apply it to this problem of categorising valence from arm 
movements. Our approach is to identify a diagnostic principal 
component (PC) through comparison of PCA with human 
psychophysics.  

The rest of the paper is organized as follows. In section 2, 
we report the results of human psychophysical experiments in 
categorizing movements as angry or happy. In section 3, we 
present a computational analysis of the movements by using 
PCA to identify expressive features.  In addition we use a 
Parzen window to examine how the categorization of 
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movements reconstructed using the expressive component 
correlate with human classification. In section 4 we present a 
conclusion. 

Movements were processed to find start and end-points and 
to replace small amounts of missing data.  Missing data was 
replaced by B-Spline interpolation. 

For each actor only the most typical angry and happy lifting 
action was selected for further research (each actor performs 10 
repetitions of lifting action).  The most typical movement 
exemplars were defined automatically on an actor-by-actor 
basis for each emotion independently.  In the automatic 
procedure we first used Functional Data Analysis to construct 
an average curve from which each exemplar was subtracted.  
These difference signals were then subjected to Principal 
Components Analysis (PCA) and the movement with the 
smallest PCA scores was selected as the most typical. The 
original position data for the most typical movements was then 
used to render animations that depicted the six recorded joints 
as black points on a white background.  These procedures 
yielded 25 angry and 25 happy movements from 25 actors. 
Because these actors come from student population in 
university and they are not professional actors, it is expected 
that not all their performances are consistence with each other. 
From statistical point of view, actors whose performances are 
far away from the majority are outliers. We have two ways to 
remove outliers: one is to detect and remove outliers before 
further analysis are carried out. The other is to use all data in 
our dataset but employ robust statistical analysis that is not 
sensitive to outliers. However, the distribution for angry and 
happy motion are unknown and just a few samples available, 
we decided to remove outliers based on psychological 
experiments. 

2. HUMAN MOVEMENT PSYCHOPHYSICS 

2.1 Introduction 
Studies by Dittrich et al [7] and Pollick et al [1] have shown 

that from highly impoverished stimuli such as point-light 
displays [8] people can recognize emotion from movement.  As 
discussed above Pollick et al [1] proposed that the human 
representation of emotion from motion is along the two 
dimensions of arousal and valence [2].  While the arousal 
dimension is fairly well understood as being depicted in a 
formless motion cue associated with the speed at which a 
movement is performed [1, 9], the stimulus cues associated 
with the other dimension are less well understood.  A pair of 
emotions that span this second dimension of valence, are anger 
and happiness, since they have been found to be close together 
on the first dimension [1], but far apart on the second.  Hence 
these are the emotions that we have used in the current 
research. 

In the following experiment we investigated how accurate 
humans were at classifying angry and happy movements.  In 
addition to accuracy we were also interested in individual 
differences among actors in producing affective movement as 
well as observers in classifying the movements. For example, in 
the recognition of gender from point-light displays there are 
examples both of actors which are consistently misclassified 
[10] as well as observers who could not perform the task [11].  
This concern with individual differences is based upon 
extensive pilot studies in trying to find features to match human 
judgements of affect.   

 
Design and Procedure 

Movements were shown to observers with two different 
tasks. In first task, they were asked to correctly identify the 
emotion depicted in the displays in a two-alternative forced 
choice (2AFC) task.  Pilot work had, however, suggested that 
while observers were relatively accurate at recognising angry 
movements, they sometimes used the “happy” category to mean 
“not angry”.  In order to take account of this, we introduced a 
second task in which observers rated both angry and happy 
movements on a six-point angry and happy scale, with 0 
depicting the absence of the emotion and 5 depicting the 
definite presence of the emotion. In the experiments, the order 
of the two tasks and the emotions for the rating tasks was 
counterbalanced. 

 

 
Figure 1. Four frames taken from a lifting movement 

2.2 Methods For the 2AFC task all angry and happy movements were 
shown in a random order.  After each presentation the observer 
had to make a response that indicated whether they thought the 
depicted emotion was either angry or happy.  For the rating task 
observers saw all movements presented in a random order with 
the task of rating one emotion and then again with the task of 
rating the other.  There were 2 presentations of each movement 
for each of the tasks.  Hence observers saw each movements 6 
times under the 2 different tasks. 

Participants 
Observers were sixteen paid volunteers recruited from the 

undergraduate population of the university they were naïve as 
to the purpose of the experiment. 
 
Stimuli 

Stimuli were point-light animations (figure 1) of lifting 
actions, which were recorded as actors depicted angry and 
happy emotions. The movement database contained movements 
from 25 actors who were recruited to perform the actions with 
emotion while their movements were recorded with an 
Optotrak.  With the Optotrak we recorded the 3D position of 
six infrared light emitting diodes attached to the head, shoulder, 
elbow, wrist and hand joints.  Actors were given a written script 
that set the situation for each emotion [5] and then performed 
10 examples of each emotion, yielding 20 movements per actor. 

2.3 Results 
From the psychophysics, we obtained discrimination results 

from the 2AFC tasks and rating results from the other tasks. 
Overall, the average percentage correct of classification for the 
movements from 25 actors was 68.1%.  The details of the rating 
data and percent correct averaged over all observers and actors 
are summarised in table 1 
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Table 1. Data form human psychophysics 

 
Three atypical human observers were removed based on 

their rating results compared with that of other observers hence 
the results from 13 human observers are used in the subsequent 
analysis. To remove the atypical observers, the standard 
correlation coefficient R of pair (x, y) was computed, where x 
and y were the rating data for 25 actors by two individual 
observers. Note that the minimum absolute value of R is 0.0 
and maximum is 1.0. Figure 2 gives the examples of high and 
low correlations. We only removed the observers whose 
correlation values were all below 0.6. 
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(a) Example of high correlation. 
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(b) Example of low correlation 

 
Figure 2. Correlation test between observers 

 
By using the remaining 13 observers data, we also identified 

actors whose movements were ambiguous i.e. actors whose 
happy or angry movement was classified at around chance (40-
60%).  In this way we ensured that the movements performed 
by remaining actors were confidently identified as angry or 
happy movements.  In some cases, one actor’s happy 
movement was classified as angry and his/her angry movement 
was classified as happy. Therefore, we use the perception label 
(observer’s classifications) to label actual movements. After 
removing ambiguous actors, 14 actors from the original 25 

remained. After the removal of atypical observers and 
ambiguous actors, and switching to perceptual labels the 
average percentage correct of classification for the movements 
from 14 remaining actors rose to 90.9%. The average rating for 
angry movements as “angry” rose to 3.75 out of 5 and the 
average rating for happy movements as “happy” rose to 2.76 
out of 5. 

Angry Happy
% Correct 64.87 71.25
Rating as Angry" 2.46 1.318
Rating as "Happy" 1.58 2.36

Movement
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3. COMPUTATIONAL ANALYSIS OF MOVEMENTS 
 

In the previous section, we used human visual 
psychophysics to obtain a rating data for 14 typical actors’ 
movements.  In this section we explore a computational 
analysis of these movements with the goal of finding the 
features which drive human perception of angry versus happy 
intent.  Our basic approach is to first perform principal 
component analysis (PCA) separately on the angry and happy 
movements and find the principal components which correlate 
highly with human ratings of anger and happiness respectively.  
Next, to verify the effectiveness of these select principal 
components in representing anger and happiness we obtain 
reconstructed movements using a limited set of principal 
components and examined whether the resulting movements 
could be discriminated using a Parzen Window.   

3.1 Finding the features by using PCA 
Human movements can be described as the change in body 

pose over time. In order to perform PCA, we arranged pose 
(arm joints) and time into one dimension and actors in the other 
dimension (Figure 3). 
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Figure 3. Movement matrix 

 
The data for angry movements were put in a matrix A 

(angry matrix) and the data for happy movements in a matrix H 
(happy matrix). Before decomposition of the movement matrix, 
we first centred the motions by mean-subtraction of the 
trajectories along X, Y and Z coordinates.  Then we computed 
the covariance matrix B from the zero-mean matrix W. Finally, 
we performed Singular Value Decomposition (SVD) on the 
covariance matrix to obtain eigen values and vectors. Recall 
that the SVD of the covariance matrix B represents it as a 
product of three matrices, , where U is the 
orthogonal matrix of the eigenvectors, S is the diagonal matrix 
whose diagonal elements are the eigenvalues of B and V is an 
orthonormal matrix whose columns are the right singular 
vectors. The PCs (feature vectors) can be obtained by 

, where F is PCs and W is the zero-mean matrix.  

TUSVB =

WUF T=
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PCA produced 900 principal components. Because during 
SVD, we sort out eigenvalues by value from high to low, only 
the first few PCs count for the major variance of original 
dataset. In our case, the first 20 PCs count for 99.2% variance 
and we examined how well these 20 PCs related to the human 
rating data.  To do this we took each principal component and 
found the projection of the entire set of angry or happy 
movements onto this component.  Next, we took these 
projections and using the standard correlation coefficient we 
calculated their correlation to the human rating data.  In Figure 
4 we show these results, where large positive correlations 
indicating that the more this component was present the higher 
the human rating of emotional intensity. 

From figure 4, we can see that PC7 has the highest 
expressive value for the angry movements and PC11 has the 
highest expressive value for the happy movements.  Thus, for 
the current movement set, we can consider PC7 and PC11 to be 
essential features of the movement in conveying affect. 
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(a) The correlation between PCs of the angry matrix and human 

angry rating data 
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(b) The correlation between PCs of the happy matrix and 

human happy rating data 
 

Figure 4 
 

3.2 Discrimination of Reconstructed Movements 
In order to examine the expressiveness of the selected 

principal components we examined the ability to discriminate 
between reconstructed angry and happy movements.  In the 
following we first present our techniques for reconstructing 

movements and then follow with the techniques used for 
discriminating between the reconstructed angry and happy 
movements.   

There are a number of possible principles we could use in 
selecting components for movement reconstruction via the 
Karhunen-loeve transform. Foremost, we wish to examine the 
expressiveness of PC 7 for the angry movement and PC 11 for 
the happy movement, however since these two components do 
not by themselves account for a substantial part of the variance 
of the movements we considered it best to consider these 
expressive components in conjunction with other components 
that are important in the reconstruction of the movement.  Thus 
we choose the first two principal components from each matrix.  
This resulted in the four different sets of movement: “two-PC” 
angry movements from angry matrix A using only first two 
PCs, “two-PC” happy movements from happy matrix H by 
using only first two PCs. “expressive” angry movements from 
angry matrix A by using the first two PCs along with PC7, 
“expressive” happy movements from happy matrix H by using 
the first two PCs and PC11. Figure 5 provides a comparison of 
three kinds of reconstructed movements. The three curves are 
shown in figure 5 are the trajectories of the wrist joint along x 
coordinate.   In the following we discuss how a Parzen window 
was used to discriminate between the reconstructed “two-PC” 
angry and happy movements as well as the reconstructed 
“expressive” angry and happy movements. 
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Figure 5. Comparison of the types of reconstructed movements 
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In order to discriminate between the reconstructed angry 
and happy movements we used a nonparametric density 
estimation approach based on Parzen window [12][13][14] as 
follows: 
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where ( )angryp xˆ , ( happyp xˆ

d

) are estimates of likelihood 

of measurement R∈x

= N

 given angry  or happy movements, 
respectively;  is the weighted (kernel) function with such a 
constrains that it should be probability density function (PDF) 
itself, e.g., Gaussian density; d is the dimensionality (in our 
experiment, d=900);  ( N )  is the number of samples in 
angry (happy) movement datasets, respectively (in our 
experiment );  is the smoothing parameter; 

is the n-th column of matrix A; and  

is the n-th column of matrix H. In order to 
optimise the performance of Parzen window, we have to 
optimise the h. When the number of samples is few, the 
common way to find the best h is jackknifing. It holds back one 
known sample from the training dataset and then tests the 
performance of the Parzen window. Then we put this sample 
back into training dataset and remove a different sample. By 
doing this for every case, we are able to evaluate the efficacy of 
a value h. Thus, to optimise h, we simply select many values 
(from 0.1 to 20.0) and choose one that performs best on the 
jackknife test. The best value for h we obtain in this experiment 
is 0.99. 

( )⋅κ

1N

d

1N 2

422 = h
dangry

n R∈x
happy
n R∈x

There are 2 main reasons why we employed Parzen 
window estimates: 1) it is difficult to assume a priory a 
particular functional form of the PDF of underlying 
distributions related to sensor measurements obtained from 
actors; 2) one of the main advantage of Parzen window is a 
little or no training time is required.  

But unlike parametric or semi-parametric approaches to 
probability density estimation, Parzen density estimates employ 
the entire training datasets in defining density estimates for new 
observations. Because it is expensive and time consuming to 
perform psychology experiments there are only a few training 
sample available and storage requirements are reasonable.  

Using maximum-likelihood approach we discriminate 
between angry and happy movements as following 

 

{ }
( k

happyangryC
ML CxpC

k

ˆmaxarg
,∈

= )    (3) 

 
where  is the result of classification by an artificial ideal 

observer based on the 
MLC

( )angryp xˆ  and ( )happyp xˆ  
estimates. The average of correct classifications for original 
angry and happy movement datasets (using matrices H, A and 
Eq.  (1), (2), (3)) equals to 81%. But the probability of correct 
classification was improved to 88% if we used the “two-PC” 
movements, and to 96% if we used the “expressive” 
movements (first two PCs and feature PC). 

However, we are not only interested in finding features that 
give us the best results of classifier performance, but also we 
want to compare the performance of human observers and the 
performance of artificial observers (Parzen window). That is 
why, it is necessary compare the correlation between the output 
of Parzen window ( )angryp xˆ , ( happyp xˆ ) and human 
rating data of the angry and happy movements. Table 2 give the 

results of using the standard correlation coefficient to find the 
correlation between rating data from human observers and 
output probabilities from the artificial observer for the 
reconstructed ‘expressive’ movements. A high positive 
correlation indicates that when the artificial observer found a 
movement to be highly probable in expressing a certain 
emotion, that human observers rated this movement as highly 
expressive in conveying the emotion. 

 
 

Table 2: The correlation results between outputs of Parzen 
window and human rating data. 

 Human observer 
 Angry rating Happy rating 

Angry 0.807 -0.651 

 
Parzen
window

Happy -0.617 0.626 
 

4. CONCLUSIONS 
The goal of this research was to reveal features of human 

movement that could be diagnostic for the recognition of affect.  
To achieve this goal we began with a motion capture database 
of arm movements and performed psychophysical experiments 
to provide us with a subset of these original movements that 
could be reliably labeled by human observers.  Analysis of this 
subset of movements using principal component analysis 
revealed components that correlated well with human 
judgements and could be considered as expressive components.  
Further analysis of the classification of reconstructed 
movements containing these expressive components were 
consistent with our interpretation that we had uncovered 
features that are diagnostic for human recognition of affective 
movement. 

Although the current findings are limited in that they apply 
to only the recognition of angry and happy lifting movements 
of the arm, the methods developed can be applied to other 
actions and affects.  The significance of this result being that it 
provides a mean for further study to obtain robust definitions of 
the information within movements that indicate the expression 
of affect.  Given the complexity of the human movement signal 
and the current limited understanding of the precise features 
that lead to the perception of affect; the integration of 
psychological data within the pattern recognition approach 
provides a potentially powerful method to reveal the biological 
basis of affection recognition. 

In the future we plan to apply this method to other actions 
using 3D motion capture recordings of the entire body.  By 
examination of other actions and body segments we hope it will 
be possible to generalize the features used for affect 
recognition.  In addition to this we hope to carefully investigate 
the visual recognition of the reconstructed movements in 
comparison to the original movements.  Finally, it is also of 
interest for engineering applications like motion compression to 
utilize our results to achieve high rate compression for human 
motions without losing the expressive quality of the data. 
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