Vehicle Infrastructure Integration System Using Vision Sensors to Prevent Accidents in Traffic Flow

K. Fujimura, T. Konoma, and S. Kamijo,

Si-Hyuk Yi

theshy@sclab.yonsei.ac.kr
Outline

• Motivation
• System overview
 – Overview of the VII system by vision
 – Proposal of the VII system to prevent accident
 – Overview of the VII system
• Proposed method
 – Vehicle tracking algorithm
 – Detection of shock waves by the vision
 – Detection of shock waves by the vision
 – Steps of detection
 – Parameters settings of shock wave detection
• Experiments
• Conclusion
Motivation

• Background
 – Fatalities from traffic accidents: gradually decreasing
 • Legal measures such as making the use of seat belts compulsory
 • Development of emergency medical care
 – The number of accidents: has increased
 • Improvement of road safety is required
 • Considered with special attention

• Incident detection systems worldwide
 – Vehicle Infrastructure Integration (VII), USA
 – SARETEA, Europe
 – Advanced cruise assist Highway System (AHS), Japan
 • California, field tests of collision warning systems in intersections
 • Japan, field tests of collision warning systems for obstacle forward in Tokyo metropolitan expressway
Overview of the VII system by vision

• Factor analysis of traffic accidents in the Akasaka tunnel
 – Data: both ultrasonic wave sensors, video cameras
 – Result: two categories of traffic accident

• Boundary of shock waves
 – Saturated traffic: vehicles do not move at constant speed
 • Traffic density low: 40 km/h
 • Traffic density high: almost stalled
 – Almost rear-end accident: rapid speed difference

• Traffic jam
 – Low speed about 10 km/h
 – Driver’s carelessness
Proposal of the VII system to prevent accident

- Shinjuku route of Tokyo Metropolitan Expressway
 - Ultrasonic wave sensors
 - Surveillance video cameras, every 70-80 m
Overview of the VII system

• Three parts of system
 – Vehicle tracking
 – Detection
 – Information providing

• Tracking
 – Average velocity of traffic flow
 – Result of the vehicle tracking part in vision sensor

• Detection
 – Incoming shock wave
 – Algorism based on the calculated average velocity

• Shock wave detection
 – Warning information: dedicated short-range communications (DSRC)
 – Position where the shock wave existes at the time
Vehicle tracking algorithm

- **S-T MRF model**
 - Segmentation of the object region in the spatio-temporal image
 - Tracking the object against occlusions

- **Segmentation of spatial MRF**
 - Image pixel by pixel, usually
 - Usual video cameras do not have such high frame rates: objects typically move ten or 20 pixels among consecutive image frames.

- **Neighbouring pixels within a cubic clique**
 - Never correlate in terms of intensities or labelling
 - Image into blocks as a group of pixels
 - Optimized the labelling of such blocks by referring to the texture
 - Combination with their motion vectors.
 - Image: 640*480 pixels, block: 8*8 pixels
Detection of shock waves by the vision

- Detection algorithm
 - Average speed of vehicles that pass the vision sensor
 - Speed of vehicles: calculation by tracking the results of the S-T MRF model

- Score
 - n: frame number per 0.1s

\[
\text{score}_n = \begin{cases}
1 & \text{average velocity} \geq V_{\text{flow}} \text{ (km/h)} \\
2 & V_{\text{cong}} < \text{average velocity} < V_{\text{flow}} \\
3 & \text{average velocity} \leq V_{\text{cong}}
\end{cases}
\]

\[
\text{average score} = \left(\frac{\sum_{i=n-128}^{n} \text{score}_i}{128} \right)
\]

- Condition

\[
\text{condition}_n = \begin{cases}
\text{flow} & \text{average score} \leq \text{Score}_{\text{flow}} \\
\text{critical} & \text{Score}_{\text{flow}} < \text{average score} < \text{Score}_{\text{cong}} \\
\text{congestion} & \text{average score} \geq \text{Score}_{\text{cong}}
\end{cases}
\]

\[
\text{shockwave detection}_n = \begin{cases}
on & \text{condition}_n = \text{congestion} \\
on & \text{condition}_n = \text{critical and condition}_{n-1} \\
o & \text{condition}_n = \text{flow}
\end{cases}
\]
Detection of shock waves by the vision

Proposed method
Steps of detection

• Step 1
 – Score in each frame is decided by the average speed calculated by tracking results of S-T MRF model. The score is a value from 1 to 3.

• Step 2
 – The average score is calculated from scores of past 128 frames (12.8 s).

• Step 3
 – Traffic conditions in the present frame are estimated \{flow, critical, congestion\} by the average score.

• Step 4
 – The propagation of shock waves is detected if the current traffic condition is ‘congestion’ or ‘critical’, when the last traffic condition is ‘congestion’. In this algorism, the ‘critical’ condition has a role of preventing unstable changing of traffic conditions.
Parameters settings of shock wave detection

- Parameter: V_{flow}, V_{cong}, $\text{Score}_{\text{flow}}$, $\text{Score}_{\text{cong}}$
 - Analysis of incidents at Akasaka tunnel: high-accident prone location
 - 150 incidents’ data in the past years
 - Shock wave with wave sensor data

- Result of analysis
 - Traffic flow changes from critical to the congestion
 - Velocity of traffic flow: $30\sim40\text{km/h} \rightarrow 20\sim10\text{km/h}$
 - V_{flow}: 40, V_{cong}: 20
 - $\text{Score}_{\text{flow}}$: 1.6, $\text{Score}_{\text{cong}}$: 2.4
Experiments

- Vehicle tracking
 - Akasaka tunnel
 - 40 min. images at each location by applying the S-T MRF model

- Result
 - 1266 vehicles
 - S-T MRF: 1181
 - About 93% successful
Experiments

Detection of shock wave

• Evaluation indexes
 – The number of shock waves: count of shock waves by visual observation.
 – Correct: count of shock waves observed both in visual and the system.
 – Lack: count of shock waves not observed in the system, whereas it was observed in visual.
 – False: count of shock waves observed wrong in the system, whereas it was not observed in visual.

<table>
<thead>
<tr>
<th>Number of shock wave</th>
<th>Result of detection</th>
<th>Vision condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>Lack</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

• Result
 – No recall reports in any condition
Optimization of the proposed VII system

- Environment
 - 7662 vehicles passed
 - 22:00~7:00
 - 2 days
 - November 2007

- Analysis
Experiments

Prediction success rate

\[
prediction\ success\ rate = \frac{N_{\text{success}}}{N_{\text{total}}}
\]
Conclusion

- Vehicle tracking and detecting shock waves in saturated traffic algorithms
 - Point of view that the propagation is caused by downstream bottleneck in traffic flow
 - One of main factors for traffic accident in the critical flow
- VII system that informs arrival of such shock waves to drivers
 - Investigated by the vision sensor network.
 - To increase the reliability of the VII system, a technique to correct an error about a prediction of the shock wave arrival time has been proposed.
- By the detailed analysis of the propagation of shock waves by the vision sensor network in our system,
 - This technique achieves around 5% prediction success rate improvement at the maximum compared to the case without error correction
- We are going to evaluate the tolerance from the view of human-factors engineering in the future