Real-Time Recognition and Profiling of Appliances through a Single Electricity Sensor

A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare
Overview

- Real-Time Recognition and Profiling of Appliances through a Single Electricity Sensor
 - IEEE Secon 2010

- Goal : Real-time Electrical Appliance Recognition (RECAP)

- Origin : NALM (Nonintrusive Appliance Load Monitoring)
- **NALM** (Nonintrusive Appliance Load Monitoring)
 - Real power (active power) edge
 - Insufficient computing power
Evolution of NALM

- Sufficient computing power
 - Instantaneous current & voltage
 - Complex computation such as FFT, Wavelet transformation
- Various features can be extract
 - Instantaneous power
 - Reactive power
 - Apparent power
 - Current
Instantaneous power

Real

Reactive

Apparent Power

Last Week
• **Instantaneous Power**: product of the voltage and current at a given time

• **Real Power**: net transfer of energy in one direction
 – the average of the instantaneous power

• **Reactive Power**: measure of the power going back from the load to the supply

• **Apparent Power**: product of the Root-Mean-Squared (RMS) of the Voltage and the RMS of the Current

• **Power Factor**: \(\cos(\theta) \)
• **Instantaneous Power**
 – \(\text{inst_power} = \text{inst_voltage} \times \text{inst_current} \)

• **Real Power**
 – \(\frac{\text{sum_instantaneous_power}}{\text{number_of_samples}} \)

• **Apparent Power**
 – \(\text{apparent_power} = \text{root_mean_square_voltage} \times \text{root_mean_square_current} \)

• **Power Factor**
 – \(\text{power_factor} = \frac{\text{real_power}}{\text{apparent_power}} \)
• Challenges
 – Appliances with similar current draw
 – Appliances with multiple settings
 – Parallel appliances activity
 – Load variation
 – Long appliance cycles
RECAP

- **Features**
 - real power
 - power factor
 - peak current
 - RMS current
 - peak voltage
 - RMS voltage

- **Normalize**
 - signature length
 - sampling frequency

<table>
<thead>
<tr>
<th>Captured Parameters</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature ID (SID)</td>
<td>SID</td>
</tr>
<tr>
<td>Real Power</td>
<td>Device Location</td>
</tr>
<tr>
<td>Power Factor</td>
<td>Temperature</td>
</tr>
<tr>
<td>RMS Current</td>
<td>Humidity</td>
</tr>
<tr>
<td>RMS Voltage</td>
<td></td>
</tr>
<tr>
<td>Peak Current</td>
<td></td>
</tr>
<tr>
<td>Peak Voltage</td>
<td></td>
</tr>
<tr>
<td>Sampling Rate</td>
<td></td>
</tr>
<tr>
<td>Timestamp</td>
<td></td>
</tr>
<tr>
<td>State: [startup, steady, shutdown, off]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th>Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance ID (AID)</td>
<td>User ID (UID)</td>
</tr>
<tr>
<td>Type</td>
<td>Name</td>
</tr>
<tr>
<td>Model</td>
<td>Confidence Rate</td>
</tr>
<tr>
<td>Make</td>
<td>Association</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Meter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter ID (MID)</td>
<td></td>
</tr>
<tr>
<td>Device Type</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature Property</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SID (Primary key)</td>
<td></td>
</tr>
<tr>
<td>AID</td>
<td></td>
</tr>
<tr>
<td>MID</td>
<td></td>
</tr>
<tr>
<td>UID</td>
<td></td>
</tr>
</tbody>
</table>
RECAP

- Markov Chain
RECAP

• **Markov Chain Classifier**
 – Although MC can be a suitable solution for monitoring a limited number of appliances, the system may not scale well to handle appliances in the order of tens via a single energy meter

• **Multistate Markov chains**
 – Complexity
 – Flexibility
RECAP

• Bayesian classifier
 – Can’t handle with vibration of parameter

• Artificial Neural Network
 – handle any type of data
 – unnecessary prior understanding
 – easy extensibility
 – learning process can be automated
 – error feedback
 – multiple simultaneous appliance states
• 3-Layer ANN
• Training
• Recognition
Experiment

(a)

(b) Kettle, Heater, Microwave, Fridge

(c)